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Path Length Correction for Improving Leaf Area
Index Measurements Over Sloping Terrains: A
Deep Analysis Through Computer Simulation
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Abstract— The in situ measurement of the leaf area index (LAI)
from gap fraction is often affected by terrain slope. Path length
correction (PLC) is commonly used to mitigate the topographic
effect on the LAI measurements. However, the terrain-induced
uncertainty and the accuracy improvement of the PLC for LAI
measurements have not been systematically analyzed, hindering
the establishment of an appropriate protocol for LAI mea-
surements over mountainous regions. In this article, the above
knowledge gap was filled using a computer simulation frame-
work, which enables the estimated LAI before and after PLC
to be benchmarked against the known and precise model truth.
The simulation was achieved by using CANOPIX software and
a dedicatedly designed ray-tracing method for continuous and
discrete canopies, respectively. Simulations show that the slope
distorts the angular pattern of the gap fraction, i.e., increasing
the gap fraction in the down-slope direction and reducing it in
the up-slope direction. The horizontally equivalent hemispheric
gap fraction from the PLC can reconstruct the azimuthally
symmetric angular pattern of the real horizontal surface. The
azimuthally averaged gap fraction for sloping terrain can both be
underestimated or overestimated depending on the LAI and can
be successfully corrected through PLC. The topography-induced
uncertainty in LAI measurements is found to be ∼14.3% and
>20% for continuous and discrete canopies, respectively. This
uncertainty can be, respectively, reduced to ∼1.8% and <7.3%
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after PLC, meeting the up-to-date uncertainty threshold of 15%
established by the Global Climate Observing System (GCOS).
Closer analysis shows that the topographic effect is influenced
by fractional crown cover, and the largest uncertainty which
corresponds to extensively clumping canopy can reach nearly up
to 50%. The accuracy of the estimated LAI after PLC safely
meets the GCOS uncertainty threshold even for this extreme
case. This study demonstrates the necessity of a topographic
correction for LAI measurements and the applicability of PLC
for reconstructing the horizontally equivalent gap fraction and
improving the LAI measurements over sloping terrains. The
results of this article throw light on the design of a protocol
for LAI measurements over mountainous regions.

Index Terms— Computer simulation, in situ measurement, leaf
area index (LAI), path length correction (PLC), topographic
effect.

I. INTRODUCTION

LEAF area index (LAI) is generally defined as one-half
of the total area of leaves per unit area of ground [1].

On sloping surfaces, the LAI can be projected to the normal
of the slope [2] or to the direction of gravity [3]–[5]. The latter
ensures a concordant definition between vegetations growing
over horizontal and sloping surfaces, and therefore, is prefer-
able in most of the studies [3]–[5]. The LAI controls the
exchanges of energy, water, and greenhouse gases between the
land surface and the atmosphere [6]. Therefore, a wide range
of surface models used in agriculture, ecology, carbon cycle,
climate, and other related studies use LAI as an important
input [7].

In situ LAI measurements are indispensable for the
calibration of surface models [8] and the validation of
remote sensing products [9], [10]. In situ LAI measure-
ments can be collected by direct or indirect methods. Direct
methods, including destructive sampling and litter collection,
are generally seen as the most accurate, but they have the
disadvantage of being extremely time-consuming and as a con-
sequence making large-scale implementation only marginally
feasible [11]. On the contrary, most of the indirect methods use
the gap fraction measurements collected from optical sensors,
e.g., LAI-2000 and fisheye lens [12]–[14], and they transfer
these measurements to the LAI values based on the Beer’s
law [11]. Previous studies showed that the indirect methods
with proper protocols can achieve equivalent or even better
accuracy than direct methods [15]–[17]. In recent years, more
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portable or even fully automatic observation instruments, such
as LAINet [18]–[20], LED sensors [21], PASTIS-57 [22],
and smartphones [23], [24], have emerged. The indirect meth-
ods are more and more operational and preferred because of
their improved accuracy and portability.

It has been well recognized that topography modifies the
canopy structure and thereby distorts the angular distribu-
tion of the gap fraction [25]–[27]. Without considering this
effect, the topography-induced uncertainty embedded in the
gap fraction measurements will propagate to the final LAI
estimations and reduce the estimation accuracy, especially for
the dense canopies and/or steep slopes [3], [5]. Therefore,
several methods were proposed to address the topographic
effect in in situ LAI estimation. To the best of our knowledge,
Frazer et al. [28] were the first trying to address the topo-
graphic effect in LAI estimation from optical measurements.
In their proposed method, the sensor was tilted along the
slope’s normal rather than the vertical direction, reducing the
variation of the gap fraction with the azimuth. However, it is
hard to fix the sensor to this special direction during the
field campaign, so this method was seldom used in practice.
Schleppi et al. [5] proposed an iterative method to mitigate
the azimuthal dependence of the gap fraction caused by a
slope, yet this method is without analytical formulation for
the topographic correction.

Path length, defined as the distance the light travels through
the canopy, is a critical variable influencing the radiative
transfer process and is related to the canopy structure [29],
[30]. The slope significantly distorts the angular distribution
of path length. For example, relative to the horizontal terrain,
surface topography compresses the path length in the down-
slope direction and stretches it in the up-slope direction [3].
Therefore, several studies employ path length correction (PLC)
to reduce the topographic effect in LAI measurements [3],
[4], [27], [31]. The key difference existed in these PLC-based
LAI measurement methods lies in how to formulate the
path length for sloping surfaces: Walter and Torquebiau
[27] and Duursma et al. [31] used local incidence angle,
instead of the zenith angle itself, to calculate the path length;
Montes et al. [4] computed the path length by adding the local
slope angle to zenith angle; and Luisa et al. [3] proposed a
path length formula based on rigorous trigonometric consid-
eration. All of the above three methods are very simple to
implement and have the potential to reduce the topographic
effect on LAI measurements, yet the method proposed by
Luisa et al. [3] is more preferred in recent studies because
it maintains the geotropic nature of vegetation growth and
the azimuthal symmetry assumption of the leaf inclination
distribution function [3], [30], [32]. The completeness in
mechanism gives it another advantage over the other methods,
i.e., it can reconstruct horizontally equivalent gap fraction for
sloping canopies [3]. With this horizontally equivalent gap
fraction data in hand, the LAI estimation procedure for the hor-
izontal surface can be safely used subsequently without explic-
itly considering the topographic effect again. This treatment
makes the existing LAI estimation algorithms and software,
e.g., CAN_EYE [16] and CIMES [33], usable even for sloping
surfaces.

The PLC method has achieved its popularity in in situ
LAI measurement [3], [4], [27], [31] and even other research
fields including clumping index estimation [29], [34], canopy
reflectance modeling [30], and topographic normalization for
remote sensing imaginary [32]. However, the accuracy of the
PLC per se has not undergone critical assessment because of
the lack of groundtruth data. For example, a previous study
[3] found that PLC generally decreases the retrieved LAI for
discrete canopies, yet the rationality of this decrease and the
absolute accuracy of the improved retrieval procedure could
not be given without the groundtruth.

Computer simulation is an efficient alternative for validation
activities [35], [36]. It provides a highly controlled environ-
ment to implement the validation, and all the disturbing factors
influencing the LAI estimation (including leaf orientation,
clumping, and woody materials) can explicitly be specified.
Moreover, it can cover various conditions existed in the real
world through dedicatedly designed scenarios, increasing the
representativeness of the validation results. Through computer
simulation, Luisa et al. [3] found that PLC can improve the
accuracy of LAI retrieval, and Cao et al. [25] compared five
slope correction methods for LAI estimation and demonstrated
that the PLC method outperformed the other existing methods.
However, during their computer simulations, the PLC was
assessed only for continuous canopies and the performance
of the PLC method for discrete canopies is still unknown.
In addition, only the final accuracies were given, and the inter-
mediate products (e.g., horizontally equivalent gap fraction) of
PLC were not analyzed.

The objective of this study is to critically assess the perfor-
mance of PLC for improving LAI measurements over sloping
terrains. A deep analysis through computer simulation will
be implemented to fulfill this objective. This study addresses
three main specific questions concerning PLC.

1) Is the computer simulation an effective tool in the assess-
ment of PLC for the topographic effect suppression?

2) Can the PLC method provide realistic intermediate vari-
ables of the LAI estimation process (e.g., horizontally
equivalent gap fraction and azimuthally averaged gap
fraction)?

3) How does the PLC method, deduced from continuous
canopy assumption, perform for discrete canopies?

This article will be organized as follows. Section II pro-
vides the background theory for LAI estimation and PLC.
Then, the computer simulation method and scenario designed
for continuous and discrete canopies will be provided in
Section III. The assessment results for the PLC will be
described in Section IV. Finally, discussion and conclusion
are presented in Sections V and VI, respectively.

II. THEORY BACKGROUND

A. Beer’s Law for LAI Estimation

Indirect methods generally retrieve LAI from the gap
fraction measurement by inverting the Beer’s law

P(θ, ϕ) = e−G(θ)ρl(θ,ϕ) (1)
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Fig. 1. Schematics of path length over (a) sloping and (b) horizontal surfaces.
The two plots are with the same canopy structure but different path lengths
because of different surface orientations.

where θ and ϕ are the zenith and azimuthal angles,
respectively; P is the gap fraction; G, referred to as the
projection function, is the area of a unit LAI projected along
the direction (θ , ϕ) and is often assumed to be azimuthally
symmetrical; ρ is the leaf area volume density (m2/m3); l is
the path length, i.e., the distance the light travels through the
canopy. LAI can be calculated as the product of ρ and the
path length in nadir direction.

Equation (1) assumes that the leaves are randomly dis-
tributed within the canopy. For discrete canopies, this study
assumed a horizontally continuous distribution of leaves within
crowns. Small canopy gaps within the crowns and the larger
canopy gaps between crowns exist for discrete canopies.
No attenuation will occur when light passes through the
between-crown gaps, and the transfer of radiation within crown
obeys Beer’s law. In fact, the clumping index can be introduced
to account for the leaf clumping phenomenon [37], [38], which
is out of the scope of this study.

B. PLC for Sloping Terrains

For a continuous canopy over flat terrain, the path length is
independent of azimuthal angle which can be simply computed
as follows:

l(θ) = 1/cos(θ). (2)

Over a sloping surface, plants are still geotropic,
i.e., the topography may not influence the architecture of
individual plants too much. However, topography extremely
influences the topological relationship between different plants
[39], and then the path length within the canopy is distorted

[30], [32]. An illustration of how topography affects the path
length can be seen in Fig. 1. Compared with a horizontal
surface, topography stretches the path length in the up-slope
direction and compresses it in the down-slope direction. For
a horizontal surface, the minimal path length is in the nadir
direction, and the value of the path length in this direction is
not impacted by topography because of the geotropic nature of
vegetation growth. However, the minimal path length changes
with slope. For the sloping surface, the minimal appears in the
direction normal to the surface.

By applying trigonometric relationships, Luisa et al. [3]
deduced the following path length expression for sloping
surface:

l(θ, ϕ, α, β) = 1

cos θ(1 − tan α cos(ϕ − β) tan θ)
(3)

where θ and ϕ are the same as in (1). α and β are the slope
and aspect of the sloping surface, respectively.

Equations (2) and (3) both can be substituted into (1) and
obtain the gap fraction for horizontal and sloping surfaces with
identical canopy parameters. Therefore, a simple transforma-
tion from the gap fraction for the sloping surface to that for a
horizontal surface can be identified as follows [3]:

Pf = (Ps)
λ (4)

where Ps is the gap fraction for the sloping surface; P f is
the gap fraction for a hypothetical horizontal surface with
identical canopy parameters as the sloping surface, referred
to as horizontally equivalent gap fraction in the following; the
transformation factor, λ, is expressed as follows:

λ = 1 − tan α cos(ϕ − β) tan θ. (5)

The parameters in (5) have the same meaning as
in (3).

The PLC method can reconstruct the horizontally equiva-
lent gap fraction for sloping surface measurements given the
topographic factors (slope and aspect) in a very simple way
[see (4)]. LAI can be retrieved from horizontally equivalent
gap fraction data using existing algorithms and software
designed for a horizontal surface, making the LAI estimation
over sloping surfaces simple and flexible.

III. MATERIALS AND METHODS

Our main aim is to develop a simulation framework to assess
the PLC method designed for improving LAI estimations over
sloping surfaces. The assessment will be implemented for
continuous and discrete canopies, respectively, under dedicat-
edly designed canopy parameters. The simulation consists of
four main steps: 1) simulating hemispherical gap fraction for
horizontal and sloping surfaces; 2) reconstructing horizontally
equivalent gap fraction for sloping surfaces; 3) calculating
azimuthally averaged gap fraction; and 4) estimating LAI
from azimuthally averaged gap fraction using the lookup
table (LUT) method and assessing the performance of PLC.
The simulation of hemispherical gap fraction is the key to
this study and is achieved using CANOPIX software [5] and
the ray-tracing method for continuous and discrete canopies,
respectively.
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TABLE I

SPECIFICATIONS OF THE LAI, LEAF ANGLE INCLINATION (ALA),
AND SLOPE USED TO SIMULATE HEMISPHERICAL GAP FRACTION

OF CONTINUOUS CANOPY FROM CANOPIX

Fig. 2. Examples of simulated hemispherical photographs for continuous
canopies with LAI values of 1, 3, and 5, slope values of 0◦, 30◦, and 50◦,
and spherical leaf inclination angle distribution.

A. Simulating Hemispherical Gap Fraction
for Continuous Canopy

CANOPIX [5] can produce artificial canopy hemispherical
photography (HP) according to three user-set parameters: LAI,
average leaf angle inclination (ALA), and ground slope. LAI
in our simulation ranges from 1 to 5 with a step of 1; the three
typical leaf inclination angle distributions, i.e., planophile,
spherical, and erectophile with ALA of 27◦, 57◦, and 63◦,
respectively, were selected as recommended by Leblanc and
Fournier [35]; the slope was set from 0◦ to 50◦ with a step
of 10◦, to simulate flat to extremely steep slopes. Specifica-
tions of the input for CANOPIX simulations can be found
in Table I.

Examples of simulated HPs are shown in Fig. 2. The white
pixels in the simulated HPs present gaps within the homoge-
nous canopy. To calculate the hemispherical gap fraction,
the simulated HPs were divided into equiangular annuli and
azimuthal sectors (see Fig. 3). In this study, the widths of the
zenith annuli and azimuthal sector were set to 5◦ and 15◦,
respectively. The gap fraction in each segment can be easily

Fig. 3. Hemispherical segments for gap fraction calculation.

calculated as the ratio between the numbers of the white and
total pixels.

B. Simulating Hemispherical Gap Fraction
for Discrete Canopy

The simulation of the hemispherical gap fraction for discrete
canopies consists of three main steps: 1) three virtual scenes
over horizontal surface represent sparse, medium, and dense
forests were first generated; 2) the path lengths of photons
(along the different directions) within tree envelopes were then
simulated by ray tracing. Before ray tracing, the horizontal
surface was rotated (maintaining the geotropic nature of veg-
etation growth) to simulate path lengths for sloping surfaces;
and 3) gap fraction was calculated using Beer’s law [see (1)]
given the simulated path length of step (2), projection function,
and leaf area volume density.

1) Design of Virtual Scenes: The simulation was con-
strained in a 100 m × 100 m area, corresponding to a forest
stand. The tree envelope was abstracted as a spheroid with
crown width and length of 5 and 10 m, respectively. The
influence of leaf clumping around branches and twigs was
neglected, and leaves were assumed to be randomly distributed
within the crown envelope. The trees were randomly located,
nevertheless, too much overlapping between tress was not
allowed to account for plant competition. This was achieved
by setting a minimal exclusion distance (4.0 m) [40], and if
the distance between two trees was less than the exclusion
distance, one of them was deleted and put to a new location.
This implementation was iterated until distances between any
two trees were all larger than the exclusion distance. Three
virtual scenes, with a tree number of 200, 300, and 400,
were generated to represent sparse, medium, and dense forests
(see Fig. 4). The fractional crown covers (FCCs) for the three
scenes were 39%, 57%, and 74%, respectively.

The sloping forests were generated by rotating the bottom
plane of the horizontal scenes, and the geotropic nature of
vegetation growth is reserved during the rotation process. The
bottom plane was rotated from 0◦ to 50◦ with a step of 10◦,
consistent with the continuous settings (see Table I).

2) Ray Tracing for Path Length Simulation: The path length
was simulated by ray tracing. The upper boundary of the
scene is divided into grids with a side length of 0.5 m, and
the photons were originally placed on the grid points. The
paths of individual photons along a direction are traced from
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Fig. 4. Horizontal distribution of trees for the virtual scenes. The FCCs were (a) 39%, (b) 57%, and (c) 74%, respectively.

their origins until they hit the bottom boundary. Photons may
traverse more than one tree, and the accumulated geometric
distance within crown envelopes is seen as the path length.
If no tree has collided, the path length was set to zero. The
spatial distribution of the path length can be generated by this
method.

The ray-tracing procedure can be summarized as follows.

1) A photon is initialized at a grid point in the upper
boundary.

2) The nearest point (�r) of the intersection of the photon
along a direction � with a tree is found.

3) Calculate and record the geometric distance of the
photon traversing within the current crown (li ).

4) Locate the photon to a new position �r = �r + li� and
find the next collision position along �.

5) If the next collision position is located on a crown
envelope, repeat from step (3). Otherwise (the next
collision occurs on the bottom boundary), accumulate li

and assign it to the grid point as the path length there.
6) Repeat from step (1), for each grid point in the upper

boundary.

To improve the efficiency in searching for the intersection
points, the definition of “view factors” v(i , j) for each pair of
trees i and j is introduced [41]. The view factors define the
angular range of directions from tree i which may intersect
tree j . They are calculated and tabulated before ray tracing.
During ray tracing, only trees included in the range of view
factors for a tree was considered. In addition, if photons go
out the boundary of the scene, they make a reentry on the
opposite side of the scene, to avoid the side effect.

The ray-tracing algorithm proposed in this section can give
a detailed spatial distribution of the path lengths for the virtual
scenes. Examples for the dense forest stand [Fig. 4(c)] under
different topographies are shown in Fig. 5. These images
represent the spatial distribution of the path length with
0.5-m resolution. Although, they were simulated for the same
observation angle (30◦) and scene [Fig. 4(c)], the prominent
discrepancy can be obviously observed, revealing a significant
influence of topography on path length distribution within
canopy: relative to the horizontal case, the path lengths in
the up-slope [Fig. 5(b)] and down-slope [Fig. 5(d)] directions
are significantly stretched and squeezed by topography,

TABLE II

SPECIFICATIONS OF PARAMETERS USED TO SIMULATE HEMISPHERICAL

GAP FRACTION OF DISCRETE CANOPY FROM RAY TRACING

respectively. It is worth noting that when the aspect of the
sloping surface is perpendicular to the observation direction,
the slope exerts a negligible influence on the path length. This
interesting phenomenon can be clearly observed in Fig. 5(c):
the distribution of path lengths in this special direction (mean
path length = 5.87 m) is very similar to the horizontal case
(mean path length = 5.83 m).

3) Hemispherical Gap Fraction Calculation: Using the
procedure of ray tracing, path lengths in different directions
(see Fig. 3) under different combinations of slopes and tree
numbers can be tabulated in advance. Assuming leaves are
randomly distributed within the crown, Beer’s law can be
safely used to estimate the gap fraction given LAI and ALA.
To obtain the aggregate gap fraction for the stand, the gap
fraction at each pixel was calculated and averaged. The alter-
native for this procedure, i.e., first averaging the path length
over the stand and calculating the aggregate gap fraction from
the averaged path length directly, will incur scale effects [42],
and therefore was not adopted.

The parameter specifications for discrete canopies simula-
tion is summarized in Table II.

C. LAI Estimation

Azimuthally averaged gap fraction, the input for most of the
LAI estimation algorithms [7], was calculated by the simulated
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Fig. 5. Spatial distribution of path length within the virtual dense forest (with FCC of 74%). The observation zenith and azimuth angles were all set as
30◦ and 0◦, respectively. The slopes and aspects of the sloping surfaces were (a) 0◦ and 0◦, (b) 30◦ and 0◦, (c) 30◦ and 90◦, and (d) 30◦ and 180◦. The
mean path lengths of the four simulations were 5.83, 8.81, 5.87, and 4.40 m, respectively.

hemispherical gap fraction. The topographic mask, up-slope
areas blocked by sloping surface, was masked out before
computing the azimuthally average gap fraction, in accordance
with the existing protocol of LAI estimation for rugged
terrains [3], [26].

The LUT method was used to estimate the LAI from the
azimuthally averaged gap fraction. LUT records the LAI and
the corresponding gap fraction in multiple zenith angles. Too
large zenith was commonly not used in reality to avoid the
influence of diffuse scattering and mixed pixels for digital
HP [43]. The zenith angles were, therefore, set from nadir
to 62.5◦ with a step of 5◦.

Four LUTs were constructed for continuous canopy, sparse,
medium, and dense discrete canopy, respectively. For the
continuous canopy LUT, the multiangular gap fraction was
calculated using (1) and (2). The multiangular gap fraction
for the three forest scenes was yet simulated by ray tracing
(for horizontal surfaces) to account for their obvious clumping
characteristics. The four LUTs have the same combinations
of LAI (ranging from 0.1 to 6 by 0.1 step) and ALA

(ranging from 20 to 70◦ by 2◦ step). We acknowledge that
the respective use of LUTs for different canopies may be too
ideal for real-field LAI measurements. However, this treatment
can reduce the ill-condition of the inverse problem, and specif-
ically analyze the uncertainty incurred by topography. When
estimating the LAI, the simulated gap fraction was compared
with those stored in the LUT. The ten best items that can
minimize gap fraction difference in terms of root-mean-square
error (RMSE) were recorded as acceptable solutions, and their
average of LAI is the final estimate value. This “multisolution”
method is a commonly used treatment to account for the ill-
posed problem [44].

To assess the LAI estimation improvement caused by
PLC, we constructed LUTs only for the horizontal surface.
The accuracy of the estimated LAI using the corresponding
horizontal LUT before and after PLC will be compared.
To quantify the retrieval performance, three indicators were
adopted, i.e., the coefficient of determination (R2), relative
root-mean-square error (R-RMSE), and relative bias (R-Bias)
to assess the goodness of fit, general accuracy, and system
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Fig. 6. Comparisons of the reference LAI with LUT-estimated LAI. The canopies are assumed to be (a) continuous and discrete with FCCs of (b) 39%,
(c) 57%, and (d) 74%, respectively.

Fig. 7. Gap fraction over the (a) horizontal surface and a 30◦ sloping surface (b) before and (c) after PLC. The simulated gap fraction is under the same
canopy structure, i.e., LAI of 3.0 and spherical leaf inclination angle distribution. The canopies are assumed to be continuous during the simulation.

bias, respectively. R-RMSE and R-Bias were defined as the
RMSE and Bias normalized by the average of reference values,
i.e., the inputs of the computer simulation. The uncertainty
caused by the retrieval process per se is slight, with R2

nearly equals 1.0, R-RMSE and R-Bias less than 4.3% and
1.6%, respectively (see Fig. 6). The good performance of the
LUT method for horizontal surfaces can make us neglect the
uncertainty caused by the estimation process and focus on
topographic effect and correction.

IV. RESULTS

A. Continuous Canopies

1) Topographic Correction of Gap Fraction: Fig. 7 shows
CANOPIX [5] simulated hemispherical gap fraction for a
continuous canopy with an LAI of 3.0 and spherical leaf
inclination angle distribution. For better comparison, the gap
fraction over the horizontal surface [Fig. 7(a)], a 30◦ sloping
surface before [Fig. 7(b)] and after PLC [Fig. 7(c)] are all
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shown. The gap fraction for the horizontal surface exhibited
azimuthal symmetry and decreased with a zenith angle with
the maximum value located in the nadir direction. The slope
distorted the angular pattern of the gap fraction. Generally,
slope exaggerated the gap fraction in the down-slope direction,
and diminished it in the up-slope direction [the right part
in Fig. 7(b)]. The maximum gap fraction was also shifted from
the nadir to the normal to the surface. After PLC, the orig-
inal gap fraction for the horizontal surface was satisfactorily
restored both in magnitude and angular pattern except that
topographic mask could not be retrieved because of surface
occlusion.

The azimuthally averaged gap fraction corresponding to
Fig. 7 was also analyzed. For a more comprehensive under-
standing of the topographic effect for different LAI values,
we added the cases for LAI of 1.0 and 5.0 (Fig. 8). For
a small zenith (<30◦), the gap fraction over the sloping
surface was very similar to the horizontal case, and the
discrepancy between the horizontal and sloping gap frac-
tion gradually increased with zenith. For a small LAI case
[e.g., LAI = 1 as in Fig. 8(a)], the gap fraction over the
sloping surface was lower than the horizontal case for most
of the zeniths. The exception appeared when the zenith was
extremely slant, e.g., zenith = 62.5◦. On the other hand, for
a large LAI [e.g., LAI = 5 as in Fig. 8(c)], the gap fraction
over the sloping surface was always larger than the horizontal
case. The canopy with a medium LAI was independent of
terrain when the observation zenith was not too large, and
the gap fraction for sloping surface and horizontal surface
nearly coincided with each other when the zenith was less than
50◦. The PLC method performed very well, and the corrected
azimuthally gap fraction was nearly the same as that for the
corresponding horizontal surface.

2) LAI Estimation: Simulation found that the slope
significantly influences the LAI retrieval accuracy, and the
uncertainty caused by topographic effects is about 14.3%
(quantified by R-RMSE) for continuous canopies [Fig. 9(a)].
The estimated LAI was overestimated and underestimated for
small (e.g., LAI = 1.0) and larger LAI (>2.0), respectively,
without the consideration of the topographic effect. When LAI
is 2.0, there is no obvious bias observed. Generally, the topo-
graphic effect caused underestimation of the LAI with R-Bias
of −4.6%. After PLC, the consistency between estimated
and reference LAI was significantly improved [Fig. 9(b)]:
most of the points clustered around the 1:1 line (R2 = 1);
R-RMSE was reduced to 1.8% without any obvious bias
(R-Bias = 0.3%).

To further investigate the influence of slope on LAI
estimation and the dependence of the topographic effect on
the LAI value, we analyzed the change of R-RMSE with
slope and LAI (Fig. 10). Without considering the topographic
effect, the R-RMSE increased gradually from less than 3%
(for a slope of 10◦) to nearly 25% (for a slope of 50◦).
LAI per se also influences the magnitude of the topographic
effect. When LAI is 2.0, the estimated LAI shows the least
sensitivity to slope because the increase of the gap fraction
in the down-slope direction compensates the decrease in the

up-slope direction. The PLC method is very stable and robust
with respect to different slopes and LAIs.

B. Discrete Canopies

1) Topographic Correction of Gap Fraction: The simulated
hemispheric and azimuthally averaged gap fraction for
a discrete canopy with FCC of 74% before and after
PLC, and the corresponding horizontal cases are shown
in Figs. 11 and 12. Besides canopy representation (contin-
uous versus discrete), other factors, including LAI, ALA,
and slope, were all set as the same as in Figs. 7 and 8.
Very similar topography-induced distortion of the gap fraction
angular distribution can be observed with a difference in
magnitude. The sloping gap fraction after PLC exhibits a high
degree of consistency with the corresponding horizontal gap
fraction: demonstrating the good applicability of PLC even for
discrete canopy in reconstructing the horizontally equivalent
gap fraction.

2) LAI Estimation: The scatter plots between the reference
and LUT estimated LAI before and after PLC for the three
virtual scenes (see Fig. 4) are shown in Fig. 13. For the sparse
forest, slope incurred both overestimation and underestimation.
The estimated LAI was overestimated for small and medium
slopes (≤30◦), and overestimated for steep slopes (>30◦). For
medium and dense forests, the estimated LAI was generally
underestimated. Generally, the slope-caused uncertainty in
forest LAI measurement is more than 20%, and is impacted by
FCC: a sparser forest with more clumping is more sensitive to
slope and vice versa. With the increase of FCC, the pattern of
the scattering plot becomes more similar to that for continuous
canopies [see Fig. 9(a)]. After PLC, the LAI estimation accu-
racy is significantly improved (the right column of Fig. 13).
Although slight underestimation can also be observed after
PLC, the R2 (representing goodness of fit) was increased to
nearly 1.0, and the R-RMSE (representing general accuracy)
was less than 7.3%. What is more, PLC performs stably and
robustly even for sparse forest.

Variation of LAI estimation uncertainty (represented by
R-RMSE) for forest with slope and LAI is shown in Fig. 14.
R-RMSE gradually increased to around 15% with slope when
the slope was less than 30◦, then the increase was accelerated
and even to about 50% for the sparse forest. After PLC,
the R-RMSEs for the three forest scenes were all less than
15% even for the steepest slope (50◦). The magnitude of
the topographic effect was also influenced by the LAI value.
The larger LAI incurred a strong topographic effect and vice
versa. The PLC method was robust with respect to slope
and LAI.

V. DISCUSSION

A. Topographic Effect on LAI Measurement

High accuracy LAI measurements are the prerequisite
for surface model calibration and remote sensing product
validation [45]. The uncertainty comes from many factors,
including illumination condition, canopy clumping, and sam-
pling strategy [46]. The topography-induced uncertainty for
LAI measurement is worth being quantified because a signif-
icant proportion of vegetation grows in mountainous regions.
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Fig. 8. Azimuthally averaged gap fraction versus view zenith angle for continuous canopies. The leaf inclination angle distribution was spherical, and the
slope was set as 30◦ for sloping surface. LAIs were set as (a) 1.0, (b) 3.0, and (c) 5.0, respectively.

Fig. 9. Comparisons of the reference LAI with estimated LAI (a) before and (b) after PLC. The canopies are assumed to be continuous and overlaid sloping
surfaces during the simulation.

Several studies focusing on the topography effect on
LAI measurement and its correction exist in the litera-
ture [3], [5], [25]–[27], and [31]. The topography-induced
uncertainty has not been explicitly quantified because of the

lack of sufficient in situ measurements over mountainous
regions. This study quantitatively analyzed the topography-
induced uncertainty by an alternative way: computer sim-
ulation. Results show that the uncertainty caused by the
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Fig. 10. Variation of LAI estimation uncertainty (represented by R-RMSE) with (a) slope and (b) reference LAI for continuous canopy.

Fig. 11. Gap fraction over the (a) horizontal surface and a 30◦ sloping surface (b) before and (c) after PLC. The hemispherical gap fraction is under the
same canopy structure, i.e., LAI of 3.0 and spherical leaf inclination angle distribution. The canopy is assumed to be a dense forest with FCC of 74%.

topographic effect for LAI measurement is about 14.3% and
more than 20% (quantified by R-RMSE) for continuous and
discrete canopies, respectively. The R-RMSE can be analyzed
against the up-to-date uncertainty threshold (15%) proposed
by the Global Climate Observing System (GCOS) [47]. The
topography-induced uncertainty alone approaches or even sur-
passes this threshold. Considering other uncertainty attached to
commonly used optical instruments and estimation algorithms
(ranging from 10% to 20%, depending on operating environ-
ments [48]–[50]), topographic correction should be explicitly
used before LAI estimation over mountainous regions.

Discrete canopy is more sensitive to topography effect than
the continuous canopy. The magnitude of topography-induced
uncertainty depends on several factors. The largest uncertainty
corresponds to a canopy with large LAI and sparse FCC over
a steep slope and can reach nearly 50% (see Fig. 14).

In this study, the topography-induced uncertainty was
found dominant by underestimation, consistent with existing
studies [3], [5], [25]. However, overestimation also occasion-
ally happens. Two factors determine the compromise between
the overestimation and the underestimation: 1) the tradeoff

between the path length reduction in the down-slope direction
and stretch in the up-slope direction and 2) the nonlinear
relationship between the gap fraction and path length given
projection function and leaf area volume density [see (1)].

B. Implications for LAI Measurement
This study highlighted the necessity of accounting for the

topographic effect on LAI measurement. The satisfactory
performance of PLC on LAI estimation for continuous canopy
over mountainous regions has been demonstrated in [3] and
[25] by computer simulation. However, its performance for
discrete canopy has not yet been quantitatively analyzed. For
example, Luisa et al. [3] found that the estimated LAI after
PLC was lower than that without correction, conflicting with
the underestimation phenomenon caused by topography. This
study systematically quantified the performance of PLC for
discrete canopy by computer simulation, addressing the lack
of sufficient in situ measurements over mountainous regions
which hinder the assessment of the LAI estimation method.
The gain in LAI estimation accuracy for discrete canopy is first
given. It was found that, after PLC the topography-induced
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Fig. 12. Azimuthally averaged gap fraction versus view zenith angle for a dense forest with FCC of 74%. The leaf inclination angle distribution was spherical,
and the slope was set as 30◦ for sloping surface. LAIs were set as (a) 1, (b) 3, and (c) 5, respectively.

uncertainty can be reduced to less than 7.3% even for the
very low FCC canopy with significant clumping.

The selection of zenith angle influences the in situ LAI
estimation [51]. Too slant gap fraction was commonly avoided
to reduce the influence of diffuse scattering and other fac-
tors [43]. Sensitivity analysis found that topography imposes
a slight influence on the gap fraction in the small zenith,
e.g., <30◦ (see Figs. 8 and 12). Therefore, the gap fraction
measured within the zenith angle of nadir to 30◦ is recom-
mended for minimizing the topographic effect. An interesting
angle for the gap fraction measurement is the zenith of 57.5◦,
in which the gap fraction exhibits independence from leaf
angle distribution [52]. Although this special zenith angle is
commonly used, we found that it is very sensitive to the slope
(see Figs. 8 and 12). When applied to mountainous regions,
this zenith angle should be used with caution and PLC should
be employed to mitigate topography effect.

Although PLC can reconstruct the horizontally equiva-
lent gap fraction, the information embedded in the angular
section within the topographic mask, up-slope areas blocked
by sloping surface, is totally lost (see Figs. 7 and 11).
However, this information lost would not influence the recon-
struction of the azimuthally average gap fraction (see Figs.
8 and 12) and would not propagate to the estimated LAI.
Therefore, the abandonment of the topographic mask is recom-
mended rather than setting its gap fraction to zero [3], [26].

Compared with field campaign over the horizontal surface,
additional measurements should be collected over mountain-
ous regions. For example, the alignment of the image with
compass and bubble level, and the recording of the slope
and aspect of the sloping surface is required for the proper
delineation of the topographic mask.

In this study, the topographic effect on LAI measure-
ment and the performance of PLC were specifically ana-
lyzed assuming that the clumping information of canopy,
e.g., crown shape and distribution, was given. However,
the clumping properties are also unknown in reality and
interact with the topographic effect [4]. Therefore, topographic
and clumping effects should be simultaneously addressed
in LAI measurement for forest over mountainous regions.
Hu et al. [29] demonstrated that path length distribution
contains clumping information. The frequency distribution
of the path length for the simulated dense forest is shown
in Fig. 15. As expected, the distributions for sloping surfaces
are quite different from the one for a horizontal surface,
except for the case when the surface aspect is perpendicular
to the observation azimuth (aspect = 90, in this simulation).
This study further confirms that the clumping and topographic
effects correlated with each other. Considering that clumping
and topographic effects can be accounted for by path length
distribution [29] and PLC, it may be possible to develop a
uniform framework to cope with topographic and clumping
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Fig. 13. Comparisons between the reference LAI and the estimated LAI from LUT for different FCCs before and after PLC. The canopies are assumed to
be discrete and overlaid sloping surfaces during the simulation.

effects simultaneously. This physically consistent framework
will be developed in our future work.

The topographic variables (i.e., slope and aspect) can also
be added in the LUT to account for the topographic effect
on LAI estimation explicitly. Yet, this topography-explicit
LUT was not adopted in this study. Otherwise, We con-
structed LUTs only for the horizontal surface. This treatment
makes the existing LAI estimation algorithms and software,
e.g., CAN_EYE [16] and CIMES [33], usable even for sloping
surfaces, given the reconstructed horizontally equivalent gap
fraction.

It is also noteworthy that the PLC method was derived
based on the continuous canopy assumption. Yet, the analysis
revealed that it can be safely applied to discrete canopies.
This can be explained by the “effective parameters” paradigm,
i.e., a 1-D model can mimic the features of a 3-D canopy
if the effective parameters were used rather than the true
ones [53]. Specifically, for LAI, the effective value can be
estimated by multiplying the true value by clumping index
[54]. This study confirmed the validity of the “effective
parameters” paradigm in topographic correction for the gap
fraction.
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Fig. 14. Variation of LAI estimation uncertainty (represented by R-RMSE) with slope and reference LAI for discrete forest canopy.

This study deduced the transformation relationship between
the gap fraction over the sloping surface and its horizontally
equivalent value. Based on PLC, the LAI over sloping surface
can also be directly transferred to horizontally equivalent LAI.
This will significantly improve existing LAI products which
generally neglect topographic influences in their retrieval algo-
rithms. The “LAI-level” transformation will be tested in our
future work.

C. Computer Simulation and Embedded Uncertainties

This study analyzed the topographic effect and the rational-
ity of PLC on LAI measurement by computer simulation. This
simulation method overcomes the problem of lacking sufficient
and detailed in situ measurements.

The topographic effect and PLC performance for homoge-
neous canopy were assessed using CANOPIX software [5].
CANOPIX is an easy-to-use tool dedicatedly designed for
generating HP for continuous canopy under varying struc-
ture properties and terrains [7]. However, it cannot apply to
discrete canopy, so a ray-tracing framework was proposed
for the discrete cases. Note that the computer simulation
method was also widely used in other studies related to the
assessment of LAI measurement methods. Most of the studies
directly relied on existing simulation software. For example,
Cao et al. [25], Leblanc and Fournier [35], and Woodgate et al.
[36], employed RAPID [55], POV-Ray (www.povray.org) and
librat [56], respectively. Although these software are all rela-
tively mature and performed satisfactorily in HP simulation,
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Fig. 15. Frequenc distribution of path length for an identical dense forest (with an FCC of 74%) with different surface orientations. The observation zenith
and azimuth angles were set as 30◦ and 0◦, respectively.

they cannot generate path length, hindering the direct analysis
of topography-induced path length distortion. This drawback
was fully solved in our simulation framework, and the path
length distribution for the discrete canopy can be generated as
an intermediate outcome (Figs. 5 and 15).

We acknowledge that several factors may influence the
credibility of the assessment results.

First, the topographic and clumping effects were separately
considered. For example, three respective LUTs were con-
structed for the forestry scenes (Fig. 4). This may overestimate
the retrieval accuracy of the LUT method for forest. In other
words, the derived topography-induced uncertainty for forest
(20%) only accounts for the first-order effect, and the high
order interaction between the clumping and topographic effects
was neglected [57], i.e., this may underestimate the total
topography-induced uncertainty.

Second, the assessment results in this study are from the
most commonly used LAI estimation method, i.e., LUT driven
by multiangular gap fraction. Other estimation methods, e.g.,
those based on the zenith of 57.5◦ [7], [52] are also worth
testing to give a more comprehensive result.

Third, this study defined LAI relative to horizontal surfaces.
In few studies, LAI was recommended to be defined over
sloping surfaces [2]. However, this is not a big problem as
the former definition can be easily transferred to the latter one
through multiplying by the cosine of the slope.

Fourth, the surface was assumed to be totally sloped, and the
fluctuation within the slope was neglected. The subpixel scale
topographic effect, also known as composite sloping terrain
[58], exerts influence on the radiative transfer process [39],
[59]. However, LAI field measurement is often conducted at
a relatively small scale. For example, the essential sampling
unit for LAI product validation activity is recommended to
be around 30 m × 30 m [60]. At such a small scale the
subpixel scale topographic effect would not incur too much
uncertainty.

Moreover, other methods to calculate path length exist
in the literature, e.g., that proposed by Frazer et al. [28].
However, our previous study demonstrated that the selection
of path length parameterization has a negligible influence on
topographic correction [32].

Finally, branches, twigs, and other nonphotosynthetic
organizations were neglected during our simulation.
Piayda et al. [61] reported that the neglect of woody
tissue could yield uncertainty about 6.9%. In addition,
the tree envelope was abstracted as a spheroid, and the
trees were assumed to be randomly located. Yet different
tree shapes and spatial distributions exist in reality. A more
realistic representation of forest is needed to further confirm
our assessment results.

VI. CONCLUSION

A computer simulation framework was proposed to assess
the topographic effect and the performance of PLC on
LAI measurements over sloping terrains. The simulation was
achieved using CANOPIX software [5] and a dedicatedly
designed ray-tracing method for continuous and discrete
canopies, respectively. We produced virtual gap fraction cov-
ering a broad range of canopy structures and the following
three main conclusions were drawn.

1) Computer simulation is an effective tool in the assess-
ment of PLC for the topographic effect suppres-
sion: Computer simulation can be employed to assess
both the intermediate variables of the LAI estimation
process (e.g., horizontally equivalent gap fraction and
azimuthally averaged gap fraction) and the final LAI
estimation accuracy.

2) Topographic correction should be specially considered
for LAI measurements over mountainous regions:
Simulations found that the topography-induced uncer-
tainty in LAI measurements is around 14.3% and more
than 20% for continuous and discrete canopies, respec-
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tively. And the topographic effect is influenced by FCC,
and the largest uncertainty which corresponds to exten-
sively clumping canopy can research to nearly 50%.

3) PLC can significantly improve LAI measurements over
sloping terrains: the topography-induced uncertainty can
be reduced to 1.8% and less than 7.3%, respectively, for
continuous and discrete canopies, after PLC, meeting
the up-to-date uncertainty threshold established by the
GCOS (15%). The simulation results of this study can
inform the design of the protocol for LAI measurements
over mountainous regions and can be further improved
to add more realistic simulation.
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