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 

Abstract—The near-infrared reflectance of vegetation (NIRv) 
has been increasingly used as a proxy of gross primary production 
(GPP) across various temporal scales, ecosystems and climate 
conditions. However, topography significantly distorts NIRv and 
GPP estimations over mountainous areas. We evaluated the 
topographic effects on NIRv and applied a path length correction 
for improving its performance over mountainous areas. The 
proposed topographically-corrected NIRv (referred to TCNIRv) 
was evaluated by multiple Landsat-8 Operational Land Imager 
images with concurrent in-situ GPP measurements over the 
Lägeren mountainous forest area. TCNIRv reduced topographic 
effects in the original NIRv and it was comparable to the 
normalized difference vegetation index (NDVI) and the green 
normalized difference vegetation index (GNDVI), which are often 
deemed to be independent of topographic effects. In addition, 
TCNIRv better agreed with GPP than the other vegetation indices: 
coefficient of determination R2 = 0.90 and root mean square error 
RMSE = 1.40 gCm-2d-1 for TCNIRv compared to R2 = 0.71 and 
RMSE = 2.47 gCm-2d-1 for NIRv. The evaluation shows that 
TCNIRv is a reliable proxy of GPP, and because of its simplicity 
and physical soundness, it will facilitate vegetation monitoring 
over complex topography mountainous areas. 

 
Index Terms—Near-infrared reflectance of vegetation (NIRv), 

gross primary production (GPP), topographic effects, path length 
correction (PLC). 

I. INTRODUCTION 

errestrial gross primary production (GPP), defined as the 
overall carbon fixation through vegetation photosynthesis, 
is a key parameter for carbon cycle and climate change 

research [1, 2]. Mountainous areas occupy a high proportion of 
the earth's surface and play an important role in the complex 
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Earth system [3]. Therefore, the accurate estimation of GPP 
over mountainous areas is essential to understand the terrestrial 
ecosystems and global carbon balance.  

Over the past several decades, various satellite data-driven 
models have been proposed to estimate GPP. They can be 
primarily divided into two categories: (1) ecosystem 
mechanistic and (2) empirical statistical models. The ecosystem 
mechanistic models mainly incorporate process-based [4] or 
light use efficiency models [5]. However, they require 
meteorological data, which are often not available over 
mountainous areas, because of the scarce distribution of 
weather stations therein [6, 7]. In those cases, statistical models 
based on empirical relationships between field-measured GPP 
and vegetation indices (VIs) provide an alternative to estimate 
GPP over mountainous areas. 

The selection of appropriate VIs is the prerequisite of 
statistical models to estimate GPP. Among the existing VIs, the 
normalized difference vegetation index (NDVI) is the most 
widely used VI as a proxy for GPP [8-10]. However, many 
confounding factors, e.g., atmospheric conditions, soil 
background and saturation effects, strongly influence its value 
[11] and hinder its applications. NDVI is known to be 
insensitive to GPP at high leaf area index (LAI) values and it is 
not recommended for tracking the phenology of GPP during the 
senesce when canopy greenness and physiology are decoupled 
[12, 13]. Therefore, many VIs have been developed to 
overcome these limitations. Among them, chlorophyll-sensitive 
VIs such as the green NDVI (GNDVI), which uses the green 
band instead of the red band which is used in NDVI, appears to 
better correlate with LAI and GPP phenology [14]. The near-
infrared reflectance of vegetation (NIRv), which represents the 
near-infrared reflectance of vegetation component of the pixel, 
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has also been demonstrated as a robust proxy of GPP [15, 16]. 
NIRv minimizes the effects of background contamination [15, 
17] and the saturation effects at high biomass regions [16], but 
it is very sensitive to topographic effects [18]. 

In mountainous areas, topography modifies the local surface 
illumination conditions [19], canopy structure [20, 21] and sun-
target-sensor geometry, and significantly affects canopy 
bidirectional reflectance distribution function characteristics. 
NDVI and GNDVI mediate the topographic effects because of 
their normalized difference formula. On the contrary, NIRv and 
NIRv-derived estimates of vegetation biophysical and 
biochemical parameters are associated with considerable 
uncertainties over mountainous areas [18]. However, to the best 
of our knowledge, NIRv-GPP relationship over mountainous 
areas has not been systematically evaluated. Hence, it is 
essential to further evaluate topographic effects on NIRv and 
minimize their influence for accurate estimation of GPP. 

A series of topographic correction methods have been 
proposed in the last decades, e.g., C-correction [22], statistical-
empirical (SE) [22], sun-canopy-sensor (SCS) [23], Dymond-
Shepherd (D-S) [24] and sun-canopy-sensor with C-correction 
(SCS + C) [25]. These methods generally rely on empirical 
parameters acquired through regression between remote 
sensing observations and topographic factors. Therefore, 
although they perform excellent for images at single phases [26, 
27], inconsistency occurs in time series and spatial mosaic 
applications due to the temporally and spatially specific nature 
of the empirical parameters [28, 29]. On contrary, path length 
correction (PLC) is a physically-based topographic correction 
method, which was deduced from the simplification of the 
radiative transfer equation [27]. The mechanism underlying the 
PLC is that topography would stretch/compress the photon 
traveling distance (path length) within canopy in up-/down-
slope direction, therefore, the topographic effects could be 
reduced through compensating photon path length distortion 
[21, 30]. PLC provides a new paradigm to support long-term 
and large-scale vegetation monitoring over mountainous areas 
[29]. 

The main objective of this study is to propose a topography-
insensitive NIRv to support GPP tracking over mountainous 
areas. Specific objectives are: (1) to evaluate the topographic 
effects on the NIRv; (2) to propose a topographically-corrected 
NIRv (TCNIRv) through PLC; (3) to validate the performance 
of the proposed TCNIRv in GPP estimation over mountainous 
areas. The topographic effects on TCNIRv and its performance 
for tracking GPP are compared with the original NIRv and with 
the supposed topographic independent NDVI and GNDVI 
indices. This paper is organized as follows. The background 
theory for NIRv and PLC, and the derivation of TCNIRv are 
described in Section Ⅱ, the experimental setup in Section III and 
results in Section IV. Finally, discussion and conclusion are 
presented in Sections V and VI. 
 

II. METHODS 

A. Theoretical Background 

The proposed TCNIRv was derived by a combination of 
NIRv and PLC methods. Details can be found in [17] and [27], 
respectively. We only provide brief explanations here: 

1) Near-infrared Reflectance of Vegetation (NIRv) 
NIRv represents the near-infrared band reflectance from only 

the vegetation component [16, 17]. It is defined as [17]: 
 NIRv NDVI NIR   (1) 

 
NIR R

NDVI
NIR R





 (2) 

where R and NIR represent the red and near-infrared 
reflectances, respectively, and NDVI represents the normalized 
difference vegetation index. 

NDVI and NIR vary with the soil brightness in an opposite 
manner: darker soils have a higher NDVI but lower NIR, while 
brighter soils have a lower NDVI but higher NIR [31]. 
Therefore, NIRv, as the product of NDVI and NIR, can 
effectively addresses the soil background influence and mixed-
pixel problem. Compared with many other VIs, NIRv also 
exhibits less saturation phenomenon for dense vegetation [16].  
2) Path Length Correction 

According to path length correction (PLC) method [27], the 
reflectance over a slopped surface (ρO) can be converted to its 
horizontal equivalent (ρPLC) by multiplying a topographic 
normalization conversion factor (P): 
 PLC OP    (3) 
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where Ω1 and Ω2 are the solar and viewing directions, 
respectively. S and St, respectively, are the path lengths over the 
horizontal and slopped surfaces, which can simply be calculated 
as: 
   1 cosS    (5) 
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

 
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where θ and φ are the zenith and azimuth angles for the solar or 
viewing direction, respectively. α and β are the slope and aspect 
of the slopped terrain, respectively. Note that the normalization 
conversion factor was derived through the simplification of the 
classic radiative transfer equation under the assumption that the 
observed reflectance is only from vegetation [27]. 
 

B. TCNIRv Formulation 

NIRv represents the near-infrared band reflectance from 
vegetation component exclusively [17] and the contribution of 
soil to the pixel scale reflectance is eliminated (Eq. 1). 
Consistently, for deriving the conversion factor (P, see Eq. (3)), 
PLC assumes that the radiance collected by the sensor is only 
from the vegetation [27], and neglects the soil contamination. 
The physical meaning of the reflectance in NIRv and in PLC is 
identical. This makes the direct combination between them 
possible, and therefore we propose the following simple yet 
physically sound topographically corrected NIRv (TCNIRv): 
 TCNIRv NIRv P   (7) 
where NIRv and P are the near-infrared reflectance of 
vegetation and topographic normalization conversion factor, 
which can be calculated from Eq (1) and Eq (4), respectively. 
The proposed TCNIRv, by nature, represents the equivalent 
near-infrared reflectance of vegetation (without soil 
contamination) over flat terrain, which is under identical 
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structural and leaf characteristics as its topographic influenced 
NIRv counterpart. 
 

III. EXPERIMENTAL SETUP 

A. Study Areas  

Two 30 km × 30 km mountainous regions, with contrasting 
topographies, were selected (Fig. 1). The terrain in the study 
area Ⅰ (centered at 47°58′ N and 6°59′ E) has a complex 
orography with the elevation ranging from 305 to 1419 m, and 
its dominant land-cover type is forest. The study area Ⅱ 
(centered approximately 47°28′ N and 8°21′ E) is located in a 
terrain with a simple orography with an elevation ranging from 
298 to 876 m, and it has varying land-cover types, including 
cropland, forest, and urban settlement. The two study areas are 
characterized by a typical oceanic climate. 

The Lägeren forest flux site (CH-Lae) located in the center 
of the study area Ⅱ (the white triangle in Fig. 1) was also 
selected to evaluate the performance of TCNIRv in capturing 
the GPP dynamics. This site is located on a south facing slope 
of the Jura Mountain, and its altitude and slope are 682 m and 
27°, respectively [32]. The dominant land cover around the CH-
Lae flux site is mixed deciduous forest, with the mean tree 

height around 30 m [32]. 
 

 
Fig. 1.  AW3D30 elevation map with indication of the study areas I and II. The 
white triangle in study area Ⅱ refers to the location of CH-Lae flux tower site. 

 

B. Data 

1) Flux Data: The daily GPP estimations 
(GPP_NT_VUT_REF) at CH-Lae flux tower from 2014 
through 2018 were employed to analyze whether TCNIRv can 
improve the capacity of NIRv in tracking GPP over 
mountainous areas. The nighttime partitioning method was 
used to generate the GPP estimates. The latest FLUXNET2015 
Tier 1 dataset (Pastorello et al. 2020) freely available at 
https://fluxnet.fluxdata.org was used. Before analysis, we 
firstly smoothed the daily GPP time-series through adaptive 
Savitzky-Golay (SG) filtering [33] to reduce the bias introduced 
by random noise. The width of the moving window determines 
the degree of smoothing, and therefore is a crucial parameter of 

the SG filtering [34]. A rough guide value is around a quarter 
of the length of the annual time series [35], and thus was set to 
90 days in this study. 

2) Landsat-8 OLI Data: We downloaded all the surface 
reflectance (L2A) Landsat-8 Operational Land Imager (OLI) 
images spanning 2014 through 2018 (i.e., 38 and 58 images for 
study areas Ⅰ and Ⅱ, respectively) from Google Earth Engine 
(GEE) [36]. These GEE products were already atmospherically 
corrected based on the Land Surface Reflectance Code (LaSRC) 
[37]. The snow, cloud and cloud shadow contaminated 
observations were filtered out according to the data quality 
layer [38].  

3) Digital Elevation Model Data: The Advanced Land 
Observing Satellite global digital surface model (AW3D30), 
based on optical stereo matching of the Panchromatic Remote-
sensing Instrument for Stereo Mapping (PRISM) images [39], 
was also employed in this study. Its spatial resolution is 1 arc-
second (approximately 30 m) with a height accuracy of 4.40 m 
(RMSE) [40]. The AW3D30 dataset was released at 
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm by 
the Japan Aerospace Exploration Agency. Based on this dataset, 
topographic parameters, including slope and aspect, were 
calculated to implement topographic correction. 
 

C. Evaluation Methodology 

We assumed that a good VI, suitable for tracking GPP over 
mountainous areas, should be independent from topography and 
strongly correlated with GPP. Therefore, TCNIRv was 
evaluated in two aspects: (1) whether it can reduce the 
topographic effects; and (2) whether it can capture the GPP 
dynamics in mountainous areas.  

Three VIs, including the original NIRv, the NDVI and the 
GNDVI were selected for comparison. NDVI (Eq. 2) was found 
nearly insensitive to topography [41], and NIRv (Eq. 1) was 
often seen as a reliable proxy for GPP [15, 17, 42]. GNDVI, 
formulated as 

 
NIR G

GNDVI
NIR G





 (8) 

where G represents the green reflectance, was sensitive to 
chlorophyll content [43], and should, in theory, be a good proxy 
for GPP. Besides, GNDVI was insensitive to topography due to 

its normalized difference formula. 
The most widely used topographic correction evaluation 

method, i.e., correlation analysis [26], was adopted in this study. 
It used the determination coefficient (referred to R2 

TC hereafter), 
between the cosine of local solar incident angle (cos(i)) and the 
VI, as a criterion to quantify the topographic effects on VIs. The 
cos(i) is calculated as 

            cos cos cos sin sin coss s si          (9) 

where α and β are slope and aspect, respectively, which are 
derived from the DEM. θs and φs are the solar zenith and 
azimuth angles of the OLI images, respectively [22, 25]. An 
ideal topography-insensitive VI will have a R2 

TC value close to 
zero. Note that all pixels at 30 m resolution of study area I/Ⅱ 
were collected to calculated R2 

TC over time. 
In addition, we also analyzed the temporal consistency 

between GPP and VIs at the CH-Lae flux tower site. To 
minimize the mismatch of the footprint between the GPP 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3149655

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



 4

measurement and Landsat-8 derived VIs, the VI values were 
averaged in a 300 m × 300 m sampling window around the CH-
Lae site to compare with field measured GPP. To assess the 
capacity of VIs to predict GPP, the field measured GPP at the 
date of Landsat-8 acquisition were used as a reference. A linear 
regression between each VI and field GPP was established to 
retrieve GPP form Landsat-8 data. Finally, the performance of 
the VI-derived GPP was assessed using the determination 
coefficient (R2) and the root mean square error (RMSE) as 
compared with in-situ GPP. 
 

IV. RESULTS 

A. Topographic Effects on VIs 

A.1. Temporal Dependence of Topographic Effects 

Fig. 2 shows the temporal change in R2 
TC from 2014 to 2018 

for study area I and Ⅱ. Strong fluctuations were observed for 
NIRv, and the largest R2 

TC values appeared during winter and 
early spring (R2 

TC up to 0.65 and 0.4 for study area Ⅰ (Fig. 2(a)) 
and Ⅱ (Fig. 2(b)), respectively) when the solar zenith angle 
values are the highest (Fig. A1, see Appendix). The GNDVI 
also showed high R2 

TC values and strong seasonal fluctuations 
over study area Ⅱ. In contrast to NIRv and GNDVI, NDVI and 
TCNIRv showed low R 2 

TC  values and were relative stable 
throughout the study period for the two study areas. For a better 
comparison, the average R2 

TC values throughout the study period 
for NDVI (≈0.027/0.024 for study area I/Ⅱ), GNDVI (≈

0.038/0.006), NIRv ( ≈ 0.110/0.300) and TCNIRv ( ≈

0.021/0.013) also were depicted in Fig. 2. The results showed 
that the TCNIRv was comparable to NDVI in reducing 
topographic effect. Closer inspection revealed that TCNIRv 
was slightly more stable across time than NDVI. 
 

A.2. Spatial Dependence of Topographic Effects on VIs 

Most existing studies relying on NIRv to capture GPP 
variations were implemented at coarse resolution (lower than 1 
kilometer) [15, 42] for which topographic effects may be safely 
ignored. However, topographic effects are resolution-
dependent [3]. We simulated the resolution-dependence of 
topographic effects on VIs through aggregating Landsat-8 
observations for study area Ⅱ (Fig. 3). Results show that the 
topographic effects caused by shadows and micro-slopes were 
higher across different scales for NIRv than for TCNIRv, NDVI  
and GNDVI. The topographic effects on NIRv gradually 
decreased from 0.247 to nearly zero when observations were 
aggregated from decametric to kilometric resolutions. This 
highlights the necessity of a topographic correction for NIRv 
specially at the high spatial resolution. In contrast to NIRv, the 
topographic effects on NDVI, GNDVI and TCNIRv were 
marginal and insensitive to spatial resolution, i.e., they provide 
consistent results across varying resolutions over mountainous 
areas.  

 

Fig. 2.  The temporal profile of the determination coefficient (R2 
TC) between the 

vegetation indices (i.e., the normalized difference vegetation index (NDVI), the 
green normalized difference vegetation index (GNDVI), the near-infrared 
reflectance of vegetation (NIRv), and the proposed topographically-corrected 
NIRv (TCNIRv)) and the cosine of the local solar incidence angle (cos(i)) for 
the study areas (a) I and (b) II. The dashed lines represent the average R2 

TC values 
for the entire period. 

 

 

Fig. 3.  Spatial dependence of the determination coefficient (R2 
TC) between the 

vegetation indices (i.e., the normalized difference vegetation index (NDVI), the 
green normalized difference vegetation index (GNDVI), the near-infrared 
reflectance of vegetation (NIRv), and topographically-corrected NIRv 
(TCNIRv)) and the cosine of the local solar incidence angle (cos(i)). 
Assessment based on aggregating the OLI image acquired over study area Ⅱ on 
October 1st, 2015, from decametric to kilometric spatial resolutions. 
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B. Correlation with In-situ GPP Measurements 

B.1. Temporal Dependence of GPP-VIs Relationship 

NDVI, GNDVI, NIRv and TCNIRv all followed the general 
GPP dynamics (Fig. 4). However, closer inspection revealed 
that, during peak growing season, the dynamic ranges of NDVI 
and GNDVI (Fig. 4(a) and (b)) are narrower than NIRv and 
TCNIRv (Fig. 4(c) and (d)), because of the saturation effect. 
Meanwhile, NDVI and GNDVI still were relative stable with 
the large values when GPP started to decrease. The 
desynchronization of NDVI and GNDVI with GPP indicated 
the difficulties of these indices to track GPP phenology in the 
senescence period. It is also noteworthy, NIRv was generally 
lager due to stronger topographic effects in winter (see Fig. 2), 
therefore it was difficult to capture GPP dynamics. In contrast, 
TCNIRv had the best synchronization with GPP throughout the 
study period. 

Scatter plot between VIs and GPP also exhibited the 
saturation effect on NDVI and GNDVI (see Fig. 5(a) and (b)): 
NDVI and GNDVI keep a relative stable value (~0.9 and ~0.8) 
when GPP is larger than 9 gCm-2d-1. This saturation effect was 
obviously reduced for NIRv and TCNIRv (Fig. 5(c) and (d)). 
The proposed TCNIRv showed the strongest linear relationship 
with GPP (R2 = 0.90, RMSE = 1. 40 gCm-2d-1) and improved 
NIRv (R2 = 0.71, RMSE = 2.47 gCm-2d-1), NDVI (R2 = 0.63, 
RMSE = 2.77 gCm-2d-1) and GNDVI (R2 = 0.60, RMSE = 2.88 
gCm-2d-1) performances when evaluated over the entire study 
period. We further evaluated the performances of VIs 
specifically over the growing season from April through August. 
The results showed that the proposed TCNIRv still had the 
strongest linear relationship with GPP over the growing season 
(R2 of 0.85, 0.63, 0.50 and 0.52 for TCNIRv, NIRv, NDVI and 
GNDVI, respectively). 
 

B.2. Spatial Dependence of GPP-VIs Relationship 

The validation results from direct comparison with flux-
based GPP is influenced by the scale dependency of 
topographic effects but also by the spatial representativeness of 
eddy covariance flux footprints. Fig. 6 and 7 respectively show 
the sampling size-dependent variation of R2 and RMSE 
(between VIs and in-situ GPP). Results showed R2 (RMSE) for 
NDVI, GNDVI and NIRv increased (decreased) with the 
sampling size. In contrast, TCNIRv was relative stable across 
sampling sizes with the highest R2 (~0.9) and lowest RMSE 
(~1.5 gCm-2d-1). All VIs had a relatively good consistency with 
GPP at the kilometric scale, because the topographic effects 
were mitigated (see Fig. 3). The specified sampling size of 300 
m selected here for the validation and recommended also by [44] 
appears suitable to capture both the spatial representativeness 
of GPP and topographic effects simultaneously. 

 

Fig. 4.  Temporal profile of field measured GPP and different vegetation indices: 
(a) the normalized difference vegetation index (NDVI), (b) the green 
normalized difference vegetation index (GNDVI), (c) the near-infrared 
reflectance of vegetation (NIRv) and (d) the topographically-corrected NIRv 
(TCNIRv), over the CH-Lae site. 
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Fig. 5.  Relationships between in-situ GPP and different vegetation indices: (a) the normalized difference vegetation index (NDVI), (b) the green normalized 
difference vegetation index (GNDVI), (c) the near-infrared reflectance of vegetation (NIRv) and (d) the topographically-corrected NIRv (TCNIRv). Assessment 
over the CH-Lae site. The solid lines indicate fitted regression lines between GPP and VIs. The different colors represent the day of year (DOY). 
 

 

 
Fig. 6.  Spatial dependence of the determination coefficient (R2) between in-
situ GPP and the vegetation indices (i.e., the normalized difference vegetation 
index (NDVI), the green normalized difference vegetation index (GNDVI), the 
near-infrared reflectance of vegetation (NIRv), the topographically-corrected 
NIRv (TCNIRv)) at different sampling size from decametric to kilometric 
spatial resolutions. 

 

V. DISCUSSION 

Over mountainous areas, the obvious spatial heterogeneity, 
such as the steep slopes and radiation variations, makes GPP 
estimation more challenging. Among the existing models, 
detailed ecosystem mechanistic models can provide excellent 
fits to flux site data when accurately parameterized [45]. 
However, the scarcity of accurate meteorological data over 
mountainous areas makes the parameterization of ecosystem  
 

 

 
Fig. 7.  Spatial dependence of the root mean square error (RMSE) between in-
situ GPP and the vegetation indices (i.e. the normalized difference vegetation 
index (NDVI), the green normalized difference vegetation index (GNDVI), the 
near-infrared reflectance of vegetation (NIRv), the topographically-corrected 
NIRv (TCNIRv)) at different sampling size from decametric to kilometric 
spatial resolutions. 

 
mechanistic models a very difficult task. Therefore, the 
routinely monitoring of GPP with ecosystem mechanistic 
models is still infeasible over our mountainous areas [6]. 

The availability of long-term satellite observations has made 
it more direct and convenient to estimate GPP entirely from 
remotely sensed data. The simplest models explore the 
correlation between GPP and VIs. The most widely used NDVI 
saturates easily for dense vegetation [41], and thus has a poor 
performance in tracking GPP for high LAI values. Our findings 
show the limitation of NDVI for capturing GPP at the peak of 
vegetation season. NDVI evidences also important limitations 
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to track GPP in the Lägeren deciduous forest during the 
senescence period as we reported in previous studies [13] 
GNDVI, which has similar formula to NDVI by replacing the 
red by the green spectral band, is sensitive to chlorophyll 
content [43]. Therefore, it is supposed to be a better proxy for 
GPP. However, our results showed that GNDVI performed 
slightly worse than NDVI in the comparison with GPP (R2 = 
0.60/0.63 and RMSE = 2.88/2.77 for GNDVI/NDVI, see Fig. 
5(a) and (b)). This may be explained because of the stronger 
atmospheric contamination in the green band due to Rayleigh 
scattering than in the red band. The strong atmosphere-land 
interaction over mountainous areas further exacerbates the 
atmospheric contamination in green band [29]. Baldocchi et al. 
[16] demonstrated that NIRv was a reliable proxy for GPP 
compared to others VIs. Our results corroborate it but highlights 
the importance of a topographic correction for mountain areas. 
Direct comparison between TCNIRv and NIRv (Fig. 8) shows 
that TCNIRv has lower values over the sun-ward CH-Lae site, 
and their discrepancy was dependent on the illumination 
condition of the sloped surface (represent by cos(i)): the higher 
the solar zenith angle (i.e., the smaller cos(i)) the larger the 
differences. Considering that high solar zenith angle causes 
more obvious topographic effects (see Fig. 2 and A1), TCNIRv 
is capable of self-adaptively mediating the topographic effect 
according to their magnitude.  

 

 

Fig. 8.  Comparison of the near-infrared reflectance of vegetation (NIRv) and 
the topographically-corrected NIRv (TCNIRv) as a function of the cosine of the 
local solar incidence angle (cos(i)) over the CH-Lae site. The dashed line is the 
1:1 line. 
 

Many topographic correction methods have been proposed in 
early studies, e.g., C-correction [22], SE [22] and SCS+C [25]. 
However, those topographic correction methods were 
dedicatedly designed for reflectances. Meanwhile, the 
empirical parameters in those correction methods are 
temporally and spatially specific, which is not conducive to 
vegetation monitoring at long term and large areas [28]. 
Therefore, the common strategy to obtain topography-
insensitive VIs, i.e., first correct reflectance through above-
mentioned methods (e.g., C, SE, and SCS+C) and then calculate 
VIs, might not be the best choice for operational 
implementation [18]. An alternative strategy is to directly 
develop VIs independent from topographic effects. For 
example, Liao et al. [46] modified the EVI by changing the soil 
adjustment index from a constant to a variable related to the 

cos(i), extending the applicability of EVI to mountainous areas. 
However, this modified EVI still has an empirical nature. 
Contrary to exiting studies, the proposed TCNIRv in this study 
has solid mechanism basis without any empirical parameter. In 
addition, TCNIRv has a very simple formulation, benefiting the 
operational use in vegetation monitoring at a large spatio-
temporal scale.  

In this work, we analyzed the capacity of the VIs (NDVI, 
GNDVI, NIRv and the proposed TCNIRv) to capture the GPP 
dynamics with flux-based measurements as a benchmark (Fig. 
4 and 5). Note that flux-based GPP measurements per se are 
influenced by topography, because the steady-condition 
assumption underlying the eddy covariation technique does not 
always hold over mountainous areas [47]. The uncertainty of 
in-situ GPP measurements may influence our results. However, 
the full mechanism of how topography affects GPP is 
tremendously complex and out of the scope of our study. The 
topographic effects embedded in GPP measurements were not 
considered in our study. In fact, several studies showed the 
topographic effects on GPP are not significant [48-50]. Further 
dedicated studies are need to better understand the GPP 
topographic effects and possible scale dependences. 

Previous studies indicate that the selection of the evaluation 
criteria influences the evaluation results of topographic 
correction [51]. We employed a widely used topographic 
correction evaluation method, i.e., the correlation analysis with 
the cosine of local solar incident angle [26], to assess the 
performance of the TCNIRv in reducing the topographic effect. 
However, this evaluation implicitly assumes the land cover 
distribution is independent of slope orientation [52]. Obviously, 
this assumption is not always valid in real world, given that 
topography influences vegetation’s hydrothermal conditions. 
Therefore, residual correlation as is expected, even after a 
perfect topographic correction. Given this limitation, it may be 
worthwhile to implement the multi-criteria evaluation which 
would provide a comprehensive assessment result [26, 27, 53]. 

In addition, the selection of DEM products is also critical for 
topographic correction [54]. Previous studies [55, 56] 
demonstrated that AW3D30 DEM outperformed other 
commonly used DEM products, including SRTM and ASTER 
GDEM, in characterizing topography over mountainous areas. 
However, direct comparison revealed a high consistence among 
them in our study area (R2 > 0.99, see Fig. A2). Therefore, 
AW3D30 DEM is a reliable selection for our study. 

In rugged areas, the downward irradiance received by a 
slopped surface incorporates solar-direct, sky-diffuse and 
terrain-reflected radiance [57]. Their relative proportion varies 
with time and weather [58]. For example, in winter and early 
spring, the sky-diffuse and terrain-reflected radiance proportion 
dominate solar-direct [58]. However, only the solar-direct 
radiance component is considered in TCNIRv, and this would 
cause relative more uncertainty in winter and early spring. In 
addition, Dechant et al. [59] demonstrated that NIRvP, the 
product of NIRv and downward photosynthetically active 
radiation (PAR), was a more robust proxy for plant 
photosynthesis. This finding also highlighted the importance of 
accurate characterization of downward irradiance over 
mountainous areas [60, 61]. In future work, the characterization 
of downward irradiance (i.e., account for the influence of sky-
diffuse and terrain-reflected radiance) would be incorporated 
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into TCNIRv to further improve its performance in GPP 
monitoring over mountainous areas. 
 

VI. CONCLUSIONS 

This is the first study to propose a topographic correction 
formulation for the near-infrared reflectance of vegetation 
(NIRv). The topographically-corrected NIRv, called TCNIRv, 
was demonstrated to be a robust proxy of GPP over 
mountainous areas. TCNIRv adopted a topographic 
normalization conversion factor derived from path length 
correction (PLC) to reduce topographic effects on NIRv. 
Multiple Landsat-8 Operational Land Imager images and in-situ 
GPP measurements from 2014 to 2018 were combined to 
evaluate the proposed TCNIRv. The TCNIRv was comparable 
to or even outperformed NDVI and GNDVI in reducing 
topographic effects. In addition, TCNIRv improved these VIs 
as well as the original NIRv in tracking the seasonal variations 
of GPP over mountainous areas (R2 = 0.90 and RMSE = 1.40 
gCm-2d-1 for TCNIRv compared to R2 = 0.71 and RMSE = 2.47 
gCm-2d-1 for NIRv). The solid physical basis of TCNIRv with 
no empirical parameters and simple formulation makes it a 
useful tool for temporally and spatially consistent vegetation 
monitoring over mountainous areas. 
 

APPENDIX 

 
Fig. A1.  The temporal profile of the solar zenith angle in study area Ⅰ and Ⅱ. 

 

Fig. A2.  The comparison of SRTM DEM (a) and ASTER DEM (b) with 
AW3D30 DEM. The solid lines are the regressed results. 
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