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A B S T R A C T   

Land surface albedo plays an important role in controlling the surface energy budget and regulating the bio
physical processes of natural dynamics and anthropogenic activities. Satellite remote sensing is the only practical 
approach to estimate surface albedo at regional and global scales. It nevertheless remains challenging for current 
satellites to capture fine-scale albedo variations due to their coarse spatial resolutions from tens to hundreds of 
meters. The emerging Sentinel-2 satellites, with a high spatial resolution of 10 m and an approximate 5-day 
revisiting cycle, provide a promising solution to address these observational limitations, yet their potentials 
remain underexplored. In this study, we integrated the Sentinel-2 observations with an updated direct estimation 
approach to improve the estimation and monitoring of fine-scale surface albedo. To enable the capability of the 
direct estimation approach at a 10-m scale, we combined the 10-m resolution European Space Agency (ESA) 
WorldCover land cover data and the 500-m resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) 
Bidirectional Reflectance Distribution Function (BRDF)/albedo product to build a high-quality and representa
tive BRDF training database. To evaluate our approach, we proposed an integrated evaluation framework 
leveraging 3-D physical model simulations, ground measurements, and satellite observations. Specifically, we 
first simulated a comprehensive dataset of Sentinel-2-like surface reflectance and broadband albedo across a 
variety of geometric configurations using the MODIS BRDF training samples. With this dataset, we built the Look- 
Up-Tables (LUTs) that connect surface broadband albedo and Sentinel-2 reflectance through a direct angular bin- 
based linear regression approach, and further coupled these LUTs with the Google Earth Engine (GEE) cloud- 
computing platform. We next evaluated the proposed algorithm at two spatial levels: (1) 10-m scale for abso
lute accuracy assessment using the references from the Discrete Anisotropic Radiative Transfer (DART) simu
lations and flux-site observations, and (2) 500-m scale for large-scale mapping assessment by comparing the 
estimated albedo with the MODIS albedo product. Lastly, we presented four examples to show the capability of 
Sentinel-2 albedo in detecting fine-scale characteristics of vegetation and urban covers. Results show that: (1) the 
proposed algorithm accurately estimates surface albedo from Sentinel-2-like reflectance across different land
scape configurations (overall root-mean-square-error (RMSE) = 0.018, bias = 0.005, and coefficient of 
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determination (R2) = 0.88); (2) the Sentinel-2-derived surface albedo agrees well with ground measurements 
(overall RMSE = 0.030, bias = -0.004, and R2 

= 0.94) and MODIS products (overall RMSE = 0.030, bias = 0.021, 
and R2 = 0.97); and (3) Sentinel-2-derived albedo accurately captures seasonal leaf phenology and rapid snow 
events, and detects the interspecific (or interclass) variations of tree species and colored urban rooftops. These 
results demonstrate the capability of the proposed approach to map high-resolution surface albedo from Sentinel- 
2 satellites over large spatial and temporal contexts, suggesting the potential of using such fine-scale datasets to 
improve our understanding of albedo-related biophysical processes in the coupled human-environment system.   

1. Introduction 

Land surface albedo—the fraction of radiative flux reflected by a 
surface to the atmosphere —is a critical variable in estimating the global 
surface energy budget (Dickinson, 1983; Liang et al. 2019; Schaaf et al. 
2002). It is one of the essential climate variables that reflect the varia
tions, patterns, and drivers of the Earth’s climate by regulating the 
biophysical effects of natural events or human activities (Shuai et al. 
2014; Zeng et al. 2021). It is also tightly connected with several 
biogeochemical and hydrological cycles as the absorbed radiant flux (e. 
g. absorbed photosynthetically active radiation) drives the processes of 
plant photosynthesis, vegetation growth, and evapotranspiration (Chen 
and Liu, 2020; Marshall et al. 2018; Zhang et al. 2020a). Therefore, an 
accurate estimation of land surface albedo helps quantify the global 
surface energy budget and understand the biogeochemical and hydro
logical processes for improving predictions of future climate change 
within the context of increasing anthropogenic impacts. 

Increasing interest has particularly focused on the accurate mapping 
of fine-scale surface albedo, especially for the spatial resolution varying 
from a few to tens of meters (Li et al. 2018; Shuai et al. 2014). Fine-scale 
land surface presents spatially detailed characteristics of the landscape. 
Thus, the fine-scale variability in surface albedo reflects multiple rele
vant local- and landscape-scale biophysical processes of natural events 
and anthropogenic activities, including the land surface energy budget 
and radiative forcing, canopy photosynthesis and transpiration, wildfire 
burning, snowfall and snowmelt, urban expansion, and heat island effect 
(Baldinelli et al. 2015; Hu et al. 1999; Mihailovic et al. 2012; Potter et al. 
2020; Schwerdtfeger, 2002; Trlica et al. 2017; Wang and Davidson, 
2007). An increasing number of recent studies have proven the great 
potential of fine-scale surface albedo for many other practical applica
tions, such as forestry management (Kuusinen et al. 2014; Vanderhoof 
et al. 2014), agricultural monitoring (Gao et al. 2014; Li and Fang, 
2015), and accuracy assessments of satellite products (Lin et al. 2018; 
Román et al. 2013; Wu et al. 2016). Therefore, an improved estimation 
and monitoring of fine-scale surface albedo are essential for under
standing multiple albedo-driven biophysical processes and facilitating 
albedo-related practical applications. 

Multi-source remote sensing approaches have paved the way for 
monitoring surface albedo across different spatial and temporal scales. 
Tower-based flux network is the most accurate way to record surface 
albedo but is constrained to the local spatial extent with an effective 
footprint of several hundred to thousands of meters (Baldocchi et al. 
2001; Cescatti et al. 2012; Chu et al. 2021). Drone flights are an alter
native to flux-site observations for quantifying surface albedo with 
broader spatial coverage in a cost-effective way, but this approach is also 
restricted to a limited spatial extent of several hectares (Cao et al. 2018; 
Levy et al. 2018). Satellite remote sensing is widely recognized as the 
only practical method for mapping surface albedo at regional and global 
scales owing to its global spatial coverage and short revisiting cycle 
(Liang et al. 2013; Schaaf et al. 2002). With the rapidly increasing sat
ellite launches over the past few decades, a variety of global-scale sur
face albedo products have become available across different spatial and 
temporal resolutions, such as the Advanced Very High Resolution 
Radiometer (AVHRR, 5-km spatial resolution and daily temporal reso
lution; Csiszar and Gutman, 1999), POLarization and Directionality of 
the Earth’s Reflectances (POLDER, 6-km spatial resolution and 10-day 

temporal resolution; Breon and Maignan, 2017), Multi-angle Imaging 
SpectroRadiometer (MISR, 1.1-km spatial resolution and 9-day temporal 
resolution; Diner et al. 1998), Moderate-Resolution Imaging Spectror
adiometer (MODIS, 500-m spatial resolution and daily temporal reso
lution; Schaaf et al. 2002), Global LAnd Surface Satellite (GLASS, 1-km 
spatial resolution and 8-day temporal resolution; Liang et al. 2013), and 
Visible Infrared Imaging Radiometer Suite (VIIRS, 500-m spatial reso
lution and daily temporal resolution; Wang et al. 2013). However, these 
global products are limited to coarse spatial resolutions that cannot 
accurately capture the fine-scale dynamics of surface albedo caused by 
natural (Wang et al. 2016b) and anthropogenic disturbances (Trlica 
et al. 2017). 

High-resolution satellites, especially Sentinel-2 with a 10-m spatial 
resolution and Landsat with a 30-m spatial resolution, offer an essential 
alternative to address the observational limitations of traditional coarse- 
resolution satellite sensors. However, insufficient multi-angular obser
vations preclude using physical BRDF models to directly retrieve surface 
albedo from high-resolution satellites. Several recent studies have 
demonstrated the feasibility of fusing such high-resolution satellite 
reflectance data with traditional coarse-resolution satellite BRDF prod
uct to monitor fine-scale surface albedo. For example, Shuai et al. (2011) 
proposed a MODIS-concurrent approach by integrating the pairs of 
Landsat surface reflectance and MODIS Bidirectional Reflectance Dis
tribution Function (BRDF)/albedo data to estimate surface albedo with a 
30-m spatial resolution. Li et al. (2018) recently extended this approach 
to the Sentinel-2 satellite to generate surface albedo with a 20-m spatial 
resolution. These studies have two model assumptions/requirements: 
(1) an equal ratio of reflectance and albedo between the high-resolution 
satellites (i.e. Landsat and Sentinel-2) and MODIS with the same land 
cover; and (2) high-quality MODIS data that is concurrent with the high- 
resolution satellite for providing BRDF parameters across different land 
cover types. The major limitation of this type of approach is the lack of 
real-time high-resolution land cover classification maps, which con
strains the practicability of mapping surface albedo over large spatial 
areas. 

Alternatively, the direct estimation approach provides another op
portunity to map surface albedo from top-of-atmosphere or surface 
reflectance by using the pre-built relationships between surface albedo 
and reflectance (Liang et al. 1999). This approach avoids the real-time 
data processing of reflectance anisotropy modeling, spectral albedo 
calculation, and narrowband-to-broadband albedo conversion. He et al. 
(2018) used this approach to estimate surface albedo from the 30-m 
Landsat satellites. Zhang et al. (2020b) independently proposed a 
similar albedo estimation framework with additional prior information 
of flux-tower measurements. These studies collectively suggest the great 
potential of using the direct estimation approach for mapping fine-scale 
surface albedo. However, due to the lack of high-quality BRDF training 
samples and reliable evaluation datasets at a 10-m scale, the application 
of this approach remains challenging for the Sentinel-2 satellites with 
much higher spatial and temporal resolutions but fewer spectral bands 
(only four 10-m resolution spectral bands). Additionally, previous 
studies have successfully applied the direct estimation approach to 
alternative satellites (e.g. Landsat) across individual sites, while the 
practice of mapping fine-scale surface albedo from the Sentinel-2 sat
ellites over regional and global scales remains a difficult task due to 
limited computation capability. 
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The main goal of this study is to develop a direct estimation approach 
that allows the mapping of fine-scale surface albedo from 10-m Sentinel- 
2 satellites. It is further divided into three sub-objectives: (1) building a 
10-m scale high-quality and representative dataset of BRDF samples for 
algorithm training and developing a comprehensive albedo evaluation 
framework; (2) providing a feasible strategy for large-scale albedo 
mapping; and (3) exploring the practical implications of Sentinel-2 fine- 
scale albedo. To this end, we first integrated the 10-m resolution Euro
pean Space Agency (ESA) land cover data and 500-m resolution MODIS 
BRDF/albedo product to create representative BRDF training samples. 
We then simulated the pairs of surface albedo and Sentinel-2-like surface 
reflectance under different illumination and viewing geometry condi
tions using MODIS BRDF training samples, generated Look-Up- 
Tables (LUTs) that connect these two quantities, and finally fused these 
LUTs with the Google Earth Engine (GEE) cloud-computing platform. 
With this algorithm, we estimated surface albedo from Sentinel-2 and 
validated the derived albedo with references from 3-D Discrete Aniso
tropic Radiative Transfer (DART) simulations, tower-mounted flux 
measurements, and MODIS satellite albedo products. Lastly, we inves
tigated the practical applications of the Sentinel-2 albedo in detecting 
the fine-scale characteristics of vegetation cover and urban areas. 

2. Materials 

Two kinds of datasets were used in this study and described in detail 
as follows. 

2.1. Training and calibration datasets 

2.1.1. MODIS collection 6 BRDF/albedo product 
The 21-year (2000–2020) MCD43A1 and MCD43A3 products with 

500-m spatial resolution were used. The MCD43A1 product provides 
three weighting parameters (isotropic, volumetric, and geometric) for 
seven narrow bands and three broad bands, allowing to simulate surface 
reflectance at specific illumination and viewing geometry. The 
MCD43A3 product offers daily narrowband and broadband albedo for 
both direct (black-sky albedo, BSA) and diffuse (white-sky albedo, WSA) 
illumination conditions. The MODIS BRDF/albedo product is accessible 

at https://modis.gsfc.nasa.gov/data/dataprod/mod43.php. In this 
study, we downloaded and used MODIS BRDF/albedo for two distinct 
purposes. First, the MCD43A1 BRDF product of individual samples was 
used to generate the simulated datasets of broadband albedo and 
Sentinel-2-like spectral surface reflectance for building the reflectance- 
to-albedo LUTs using an angular bin-based linear regression (He et al. 
2018; Qu et al. 2014; Wang et al. 2015). Second, the MCD43A3 albedo 
data was selected as the benchmark to assess the accuracy of Sentinel-2- 
derived surface albedo across regional and global scales. 

To collect reliable and representative BRDF data of individual sam
ples, we filtered and downloaded the MODIS observations following 
four criteria: (1) high quality—using the quality assurance (QA) layer to 
extract high-quality MODIS pixels (i.e. quality bit index = 0); (2) ho
mogenous coverage—screening out the candidate MODIS pixels along 
with the surrounding area of 3 × 3 pixels have remained as unchanged 
land cover (indicated by the MCD12Q1 land cover product) during the 
last 21 years (2000–2020) and retaining only those pure pixels with a 95 
% land cover purity (i.e. the pixel-scale fraction of dominant land cover 
indicated by the 10-m resolution ESA WorldCover data); (3) variety of 
land cover—selecting MODIS data across 16 land cover types, except for 
water body, based on the International Geosphere-Biosphere Pro
gramme (IGBP) classification scheme; and (4) reasonable data range
—ensuring that the pair values of spectral surface reflectance and albedo 
calculated from the MCD43A1 BRDF kernel parameters were within the 
physical range of [0, 1]. According to our sensitivity analysis regarding 
the impacts of BRDF training samples on algorithm accuracy (see Sec
tion 3.1.2 below), a total of 7200 individual MODIS samples with 450 
samples for each land cover type were finally selected and used (Fig. 1). 

To assess the accuracy of the proposed algorithm over a regional 
scale, we also downloaded and used the gridded tiles of MCD43A3 al
bedo products across 16 land cover types with a global area coverage (i. 
e. sites #a – #p in Fig. 2) during the four seasons of spring, summer, fall, 
and winter (i.e. one gridded tile per land cover per season) in 2019 (see 
Section 3.3 below). Each MCD43A3 gridded tile included one dominant 
land cover type (i.e. fraction of dominant land cover within the grid tile 
indicated by the 500-m MCD12Q1 product ≥ 50 %) and was quality 
controlled using the QA layer (i.e. quality bit index = 0). 

Fig. 1. Geographical distribution of training and testing samples of Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution 
Function (BRDF)/albedo data across 16 land cover types of the International Geosphere-Biosphere Programme (IGBP) classification except for water body. A total of 
7200 MODIS BRDF/albedo samples are used, including 400 training and 50 testing samples for each land cover. The inserted figure shows the frequency of land cover 
homogeneity of 500-m resolution MODIS BRDF training samples that characterized by the 10-m resolution European Space Agency (ESA) land cover mapping data. 
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2.1.2. Sentinel-2 surface reflectance product 
The Sentinel-2 constellations with two identical polar-orbiting sat

ellites (Sentinel-2A and Sentinel-2B) were launched by the ESA in 2015 
and 2017 with the aim of providing high-resolution observations to 
support the monitoring of the Earth’s surface dynamics (Drusch et al. 
2012). Both are equipped with the multi-spectral instrument to help 
collect optical imagery with global coverage from 56◦S to 84◦N in a wide 
swath width of 290 km and a frequent revisit cycle of ~ 5 days at the 
equator. The Sentinel-2 satellite has 13 spectral bands spanning from 
visible and near-infrared (NIR) to shortwave infrared (SWIR) at different 
spatial resolutions ranging from 10 to 60 m on the ground with distinct 
purposes. Specifically, three visible (blue, green, red) and NIR bands at 
10-m resolution were designed to ensure continuity mission with the 
other high-resolution satellites (e.g. Landsat-8) to improve the land 
cover classification. Six infrared bands (i.e. four red edges, one SWIR-1, 
and one SWIR-2) at 20-m spatial resolution are used to enhance land- 
cover classification and improve the retrieval of geophysical parame
ters. The other three spectral bands at 60 m are dedicated mainly for 
atmospheric corrections and cirrus-cloud screening (Drusch et al. 2012; 
Li et al. 2018). Moreover, the high-quality radiometric performance of 
the Sentinel-2 satellite with a 12-bit radiometric resolution and 5 % 
radiometric error allowance enables the feasible acquisition of surface 
signals without saturation (Sentinel-2 Team, 2021). Thus, the high 
spatial resolution, frequent revisits, wide swath, multispectral features, 
and high radiometric quality of Sentinel-2 enable the global monitoring 
of surface dynamics. 

The 10-m resolution Level-2A Sentinel-2 surface reflectance products 
of three visible bands (blue, green, and red) and one NIR spectral band 
were used in this study and are freely accessed from the GEE platform at 
https://developers.google.com/earth-engine/datasets/catalog/ 
COPERNICUS_S2_SR. To test the proposed algorithm, we used the three- 
year (2018–2020) Sentinel-2 surface reflectance data and associated 
cloud probability product together with default cloud masking param
eters (https://developers.google.com/earth-engine/tutorials/commu
nity/sentinel-2-s2cloudless). In the main text, we primarily focused on 
2019 Sentinel-2 data, with the results of 2018 and 2020 shown in the 

supplementary materials. The overall results were comparable with 
those shown for 2019. We used Sentinel-2 data to estimate fine-scale 
surface albedo, which was validated against ground measurements 
and MODIS satellite product (see Section 3.2 below) and further eval
uated for practical applications (see Section 3.3 below). 

2.1.3. Land cover product 
To facilitate the selection of pure-pixel BRDF training samples, we 

used two types of land cover products, including the 10-m resolution 
ESA WorldCover mapping data in 2020 and the 21-year (2000–2020) 
500-m resolution MCD12Q1 land cover product. These two datasets 
were both downloaded from the GEE platform and used with quality 
control from the default QA layer. 

The MCD12Q1 product was used for two purposes: (1) to help select 
high-quality MODIS training BRDF samples; and (2) to assess the accu
racy and uncertainty of the proposed algorithm over a regional scale. 
The ESA WorldCover data were used to finalize the 10-m representative 
BRDF samples from the candidate MODIS pixels based on the above 
selection of high-quality MODIS training BRDF samples. 

2.2. Validation datasets 

2.2.1. Tower flux network observations 
The measurements of downward and upward solar radiation from 

five tower flux networks in the 2018–2020 time period were used. These 
flux networks include four which are globally distributed: Baseline 
Surface Radiation Network (BSRN), Surface Radiation (SURFRAD), 
AmeriFlux, European Fluxes Database (EuroFlux), and one regionally 
distributed Heihe Watershed Allied Telemetry Experimental Research 
(HiWATER) wireless sensor network (HiWaterWSN). The details of each 
flux network are provided as follows. 

BSRN: managed by the World Radiation Monitoring Center (WRMC) 
with the aim of providing high-quality observations of shortwave and 
longwave surface radiation fluxes, together with meteorological and 
other supportive measurements for validating and evaluating satellite- 
based estimates of surface radiative fluxes since 1992. This network 

Fig. 2. Geographic distribution of flux sites and gridded tiles for validating Sentinel-2-derived albedos across different land cover types based on the International 
Geosphere-Biosphere Programme (IGBP) classification, including barren sparse vegetation (BSV), cropland (CRO), deciduous broadleaf forest (DBF), evergreen 
broadleaf forest (EBF), evergreen needleleaf forest (ENF), grassland (GRA), mixed forest (MF), open shrubland (OSH), savanna (SAV), snow and ice (SNO), wetland 
(WET), and woody savanna (WSA). Flux sites are indicated by colored circles and the site numbers for each land cover type are shown in parentheses; gridded tiles 
are indicated by purple triangles labelled with the tile IDs from #a - #p; red triangles with the tile IDs from #q - #t represent four examples showing the practical 
applications of the Sentienl-2 albedo. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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measures downward and upward shortwave radiation with direct and 
diffuse components at 1-min sampling time intervals. The flux datasets 
are available at https://dataportals.pangaea.de/bsrn/. 

SURFRAD: part of BSRN and supported by the National Oceanic and 
Atmospheric Administration (NOAA) office of global programs with the 
primary objective of collecting accurate, continuous, and long-term 
measurements of surface radiation budget over the United States for 
supporting climate-related research since 1995. This network measures 
downward and upward shortwave radiation with total, direct, and 
diffuse components at 1-min recording time intervals through the 
broadband pyranometers mounted on 10-m flux towers. The SURFRAD 
network data contained in the BSRN network has been excluded to avoid 
any duplications. The flux datasets are available at http://www.esrl. 
noaa.gov/gmd/grad/surfrad/. 

AmeriFlux: launched in 1996 and has become one of the most highly 
regarded networks in climate and ecological research, focusing on 
climate-relevant responses and terrestrial ecosystem processes. It is now 
supported by the AmeriFlux Management Project (AMP) of Lawrence 
Berkeley National Laboratory (LBNL), and offers 30-min observations of 
downward and upward shortwave solar radiation together with tower 
height and other meteorological variables. The flux datasets are avail
able at https://ameriflux.lbl.gov/. 

EuroFlux: mainly funded by the European Union since 1996 and 
jointly supported by several research projects (i.e. CarboAfrica, Carbo- 
Extreme, GHG-Europe, ICOS, and InGOS) with the primary objective 
of providing standard and high-quality observations to enhance the 
understanding of the carbon and water cycles of terrestrial ecosystems. 
The European network currently manages over 400 flux sites and re
cords downward and upward shortwave radiation at a sampling interval 
of 30 min, with flux data available at http://www.europe-fluxdata.eu/. 

HiWaterWSN: launched during the HiWATER campaign that was 
conducted over the Chinese Hehei river basin in 2012 with the scientific 
goal of collecting integrated, distributed, and multi-scale observations to 
improve the understanding of hydrological processes and ecosystem 
functioning of arid and semi-arid regions. A wireless sensor network 
(WSN) with 40 nodes was installed across seven meteorological stations 
to measure upward and downward shortwave radiation with a 10-min 
sampling interval (Che et al. 2019). The datasets are freely available 
from the National Tibetan Plateau/Third Pole Environment Data Center 
at https://data.tpdc.ac.cn/en/special/heihe/. 

Tower height is the key parameter for the effective footprint of flux 
sites (Román et al. 2013). We thus formulated the flux sites that did not 
provide auxiliary information of tower height based on two assump
tions: (1) for the high-tower flux sites (e.g. forest), we assumed that the 
flux cameras could be installed at 3 m above the tops of vegetation 
canopy (Rojas-Robles et al. 2020) and extracted vegetation height from 
the Global Ecosystem Dynamics Investigation (GEDI) database 
(Dubayah et al. 2020); and (2) for the low-tower flux sites (e.g. grassland 
and shrubland), we assumed that flux cameras could be installed at a 
standard 10-m height similar to the SURFRAD network. To address the 
impacts of the footprint mismatch between Sentinel-2 spatial resolution 
and the flux tower footprint, we first assessed the representativeness of 
available flux sites using two Sentinel-2 albedo images with the coeffi
cient of variation (CV) metric across two leaf development and leaf 
senescence stages at each site, and then selected those homogeneous 
sites with a CV less than 10 % as validation sites. A total of 108 flux sites 
(with 91 site-years in 2018, 97 site-years in 2019, and 68 site-years in 
2020) across different land cover types were downloaded and used, 
including 5 sites from BSRN, 4 sites from SURFRAD, 76 sites from 
AmeriFlux, 19 sites from EuroFlux, and 4 sites from HiWaterWSN (Fig. 2 
and Table 1). In this study, the flux observations were first used to 
calculate site-level surface albedo, and then as ground truth to validate 
surface albedo derived from the Sentinel-2 satellites (see Section 3.2 
below). 

2.2.2. 3-D DART simulations 
3-D DART simulations of different landscape configurations were 

used. With the DART model (Gastellu-Etchegorry et al. 2015), we first 
created eight sets of 100-m × 100-m archetype scenarios with a 10-m 
spatial resolution (Fig. 3), covering one homogenous grassland, three- 
category (i.e. sparse, medium, and dense) heterogeneous forests, two 
types of built-ups (i.e. one unevenly distributed and one uniformly 
distributed), and two types of topography (i.e. one sloping surface with 
solo slope gradient and one rugged terrain that composited with a va
riety of individual sloping surfaces). We then generated a variety of 
synthetic scenarios from the archetype scenarios by setting different 
configurations of canopy structures (indicated by leaf area index (LAI)), 
solar-viewing geometry, and illumination radiation conditions). These 
configuration settings include LAI ranging from 1 to 7 with an interval of 
2, solar zenith angle ranging from 0◦ to 60◦ with an interval of 10◦, 
viewing zenith angle ranging from 0◦ to 20◦ with an interval of 10◦, 
relative azimuth angle ranging from 0◦ to 180◦ with an interval of 45◦, 
and two diffuse skylight ratios of 0 and 1. We specifically built a set of 
sloping surfaces (Fig. 3g) with the slope gradient ranging from 0◦ to 60◦

with an interval of 10◦ and the aspect gradient ranging from 0◦ to 180◦

with an interval of 45◦. A total of 35, 280 scenarios were generated, 
covering all possible combinations of configuration parameters. With 
the typical leaf (deciduous leaf), ground (brown sandy loam), building 
(red cement), and road (gray concrete) properties, we finally simulated 
synthetic images of surface hyperspectral reflectance and albedo across 
different landscape configurations, and generated a synthetic dataset of 
Sentinel-2-like surface reflectance and shortwave albedo by spectral 
integration with the prior information of the relative spectral response 
(RSR) function profiles of Sentinel-2. 

3. Methodology 

We divided the methodology into the following three major steps: (1) 
building the direct estimation approach of angular bin-based regression 
using the simulated datasets of surface reflectance and albedo; (2) 
validating the proposed algorithm with references from the 3-D DART 
simulations, ground-based measurements, and MODIS albedo product; 
and (3) exploring the practical applications of Sentinel-2-derived albedo 
in detecting fine-scale surface characteristics. A flowchart that summa
rizes these major steps is shown in Fig. 4. 

3.1. Developing the direct estimation approach 

We divided this task into the following two sub-steps. 

3.1.1. Generating simulated datasets of surface reflectance and albedo from 
MODIS data 

The MODIS BRDF data of individual samples across different land 
cover types were primarily used to simulate datasets of Sentinel-2-like 
surface reflectance and surface shortwave albedo under different illu
mination and viewing geometry conditions. 

We simulated Sentinel-2-like surface reflectance in several steps. 
First, we split the complete datasets of 7200 MODIS BRDF data of 16 
land cover types into training and validating components, with 400 and 
50 samples (Fig. 1) for each land cover type. Second, we divided the 
illumination and geometry into small angular bins, and simulated 
MODIS-like surface reflectance across seven spectral bands for each 
angular bin using the MODIS BRDF data together with the linear 
RossThick-LiSparseR BRDF model with Eq. (1) as follows (Lucht et al. 
2000): 

ρ
(
θs, θv,φ, λ

)
= fiso

(
λ
)
+ fgeo

(
λ
)
kgeo
(
θs, θv,φ

)
+ fvol

(
λ
)
kvol
(
θs, θv,φ

)
(1)  

where ρ (θs, θv, φ, λ) is surface reflectance under the solar zenith angle of 
θs, viewing zenith angle of θv, and relative azimuth angle of φ at the 
wavelength of λ; kgeo and kvol are the geometric optical and volumetric 
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Table 1 
Information of flux sites used for validation, including site name, latitude, longitude, elevation, land cover type, tower height, footprint, slope, the mean coefficient of 
variation (CV) during the leaf on and leaf off seasons, temporal range, and network. Land cover types are derived from the IGBP classification scheme, including barren 
sparse vegetation (BSV), cropland (CRO), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), grassland (GRA), 
mixed forest (MF), open shrubland (OSH), savanna (SAV), snow and ice (SNO), wetland (WET), and woody savanna (WSA).  

Site name Latitude (◦) Longitude (◦) Elevation (m) Land cover type Tower height (m) Foot 
print (m) 

Slope 
(◦) 

CV Temporal range Network 

US-A10  71.32 − 156.61 4 BSV 10 126.28  1.53 2 % 2018–2019 AmeriFlux 
US-An1  68.99 − 150.28 600 OSH 2.5 31.57  2.86 8 % 2018–2019 AmeriFlux 
US-An2  68.95 − 150.21 600 OSH 2.5 31.57  0.88 10 % 2018–2019 AmeriFlux 
US-An3  68.93 − 150.27 600 OSH 2.5 31.57  2.26 5 % 2018–2019 AmeriFlux 
US-Arm  36.61 − 97.49 314 CRO 2 25.26  0.67 9 % 2018–2020 AmeriFlux 
US-Bi1  38.1 − 121.5 − 3 CRO 2.76 34.85  0.04 6 % 2018–2019 AmeriFlux 
US-Brg  39.22 − 86.54 180 GRA 10 126.28  7.32 10 % 2018–2020 AmeriFlux 
US-Dfc  43.34 − 89.71 265 CRO 10 126.28  2.07 4 % 2019 AmeriFlux 
US-Edn  37.62 − 122.11 − 2 WET 10 126.28  0.38 8 % 2018–2019 AmeriFlux 
US-Hb3  33.35 − 79.23 7 ENF 4.34 54.8  0.55 5 % 2019 AmeriFlux 
US-Hbk  43.94 − 71.72 367 DBF 34 429.34  4.16 7 % 2018–2020 AmeriFlux 
US-Hn3  46.69 − 119.46 120.9 OSH 10 126.28  17.73 5 % 2018 AmeriFlux 
US-Ib2  41.84 − 88.24 227 GRA 2.3 29.04  0.49 3 % 2018 AmeriFlux 
US-Jo2  32.58 − 106.6 1469 OSH 5 63.14  1.67 5 % 2018–2019 AmeriFlux 
US-Kon  39.08 − 96.56 417 GRA 3 37.88  1.54 6 % 2018 AmeriFlux 
US-Ks3  28.71 − 80.74 0 WET 10 126.28  0.29 8 % 2018–2019 AmeriFlux 
US-Los  46.08 − 89.98 480 WET 10.2 128.8  0.40 10 % 2018–2020 AmeriFlux 
US-Me2  44.45 − 121.56 1253 ENF 33 416.71  5.22 7 % 2018–2020 AmeriFlux 
US-Me6  44.32 − 121.61 998 ENF 12 151.53  1.09 5 % 2018–2020 AmeriFlux 
US-Mpj  34.44 − 106.24 2138 OSH 8.8 111.12  3.17 9 % 2018–2019 AmeriFlux 
US-Nc2  35.8 − 76.67 5 ENF 22.9 289.17  1.00 8 % 2018–2019 AmeriFlux 
US-Nc3  35.8 − 76.66 5 ENF 24 303.06  1.12 6 % 2018–2019 AmeriFlux 
US-Nc4  35.79 − 75.9 1 WET 17 214.67  0.36 3 % 2018–2019 AmeriFlux 
US-Ngb  71.28 − 156.61 5 SNO 10 126.28  0.49 6 % 2018–2019 AmeriFlux 
US-Ngc  64.86 − 163.7 35 GRA 10 126.28  2.09 1 % 2018–2019 AmeriFlux 
US-Nr1  40.03 − 105.55 3050 ENF 25.5 322  9.44 9 % 2018–2019 AmeriFlux 
US-Pfb  45.97 − 90.32 474 ENF 19 239.92  1.20 8 % 2019 AmeriFlux 
US-Pfd  45.97 − 90.3 473 WET 9 113.65  0.26 10 % 2019 AmeriFlux 
US-Pfg  45.97 − 90.27 475 ENF 21 265.18  0.99 9 % 2019 AmeriFlux 
US-Pfn  45.94 − 90.28 478 DBF 19 239.92  2.01 3 % 2019 AmeriFlux 
US-Ro4  44.68 − 93.07 274 GRA 3.7 46.72  2.02 2 % 2018–2020 AmeriFlux 
US-Ro5  44.69 − 93.06 283 CRO 3.7 46.72  1.21 2 % 2018–2020 AmeriFlux 
US-Ro6  44.69 − 93.06 282 CRO 3.7 46.72  1.21 4 % 2018–2020 AmeriFlux 
US-Seg  34.36 − 106.7 1622 GRA 2.9 36.62  0.00 4 % 2018–2019 AmeriFlux 
US-Ses  34.33 − 106.74 1593 OSH 3.2 40.41  7.09 3 % 2018–2019 AmeriFlux 
US-Snf  38.04 − 121.73 − 4 GRA 2.75 34.73  1.82 3 % 2018–2020 AmeriFlux 
US-Srg  31.79 − 110.83 1291 GRA 2.6 32.83  3.29 3 % 2018–2020 AmeriFlux 
US-Srm  31.82 − 110.87 1120 WSA 7.1 89.66  2.78 5 % 2018–2020 AmeriFlux 
US-Srs  31.82 − 110.85 1169 WSA 10 126.28  3.11 4 % 2018 AmeriFlux 
US-Ton  38.43 − 120.97 177 WSA 23.5 296.75  3.51 7 % 2018–2020 AmeriFlux 
US-Tw4  38.1 − 121.64 − 5 WET 4.5 56.82  0.07 9 % 2018–2020 AmeriFlux 
US-Tw5  38.11 − 121.64 − 5 WET 5 63.14  1.47 5 % 2018–2020 AmeriFlux 
US-Uaf  64.87 − 147.86 155 ENF 6 75.77  1.64 4 % 2018–2019 AmeriFlux 
US-Umd  45.56 − 84.7 239 DBF 32 404.08  0.39 10 % 2018–2020 AmeriFlux 
US-Var  38.41 − 120.95 129 GRA 2.5 31.57  6.09 4 % 2018–2020 AmeriFlux 
US-Vcp  35.86 − 106.6 2500 ENF 24 303.06  2.55 8 % 2018–2019 AmeriFlux 
US-Vcs  35.92 − 106.61 2752 ENF 13 164.16  22.86 9 % 2018–2019 AmeriFlux 
US-Whs  31.74 − 110.05 1370 OSH 2.5 31.57  1.54 3 % 2018–2020 AmeriFlux 
US-Wjs  34.43 − 105.86 1931 SAV 8 101.02  0.23 8 % 2018–2019 AmeriFlux 
US-Wkg  31.74 − 109.94 1531 GRA 3 37.88  3.02 7 % 2018–2020 AmeriFlux 
US-Xab  45.76 − 122.33 363 ENF 19 239.92  4.46 5 % 2018–2020 AmeriFlux 
US-Xae  35.41 − 99.06 516 GRA 8 101.02  1.61 5 % 2018–2020 AmeriFlux 
US-Xba  71.28 − 156.62 6 WET 9 113.65  0.35 2 % 2018–2020 AmeriFlux 
US-Xcl  33.4 − 97.57 259 GRA 22 277.81  5.49 9 % 2018–2020 AmeriFlux 
US-Xcp  40.82 − 104.75 1654 GRA 9 113.65  0.15 3 % 2018–2020 AmeriFlux 
US-Xdc  47.16 − 99.11 559 GRA 8 101.02  3.02 4 % 2018–2020 AmeriFlux 
US-Xdl  32.54 − 87.8 22 MF 42 530.36  1.47 8 % 2018–2020 AmeriFlux 
US-Xha  42.54 − 72.17 351 DBF 39 492.47  3.87 9 % 2018–2020 AmeriFlux 
US-Xhe  63.88 − 149.21 705 OSH 9 113.65  3.28 9 % 2018–2019 AmeriFlux 
US-Xje  31.19 − 84.47 44 ENF 42 530.36  5.70 10 % 2018–2020 AmeriFlux 
US-Xjr  32.59 − 106.84 1329 OSH 8 101.02  1.99 4 % 2018–2020 AmeriFlux 
US-Xka  39.11 − 96.61 1329 GRA 8 101.02  1.22 10 % 2018–2020 AmeriFlux 
US-Xkz  39.1 − 96.56 381 GRA 8 101.02  1.26 5 % 2018–2020 AmeriFlux 
US-Xmb  38.25 − 109.39 1767 OSH 8 101.02  2.89 10 % 2018–2020 AmeriFlux 
US-Xml  37.38 − 80.52 1126 DBF 29 366.2  3.00 6 % 2018–2020 AmeriFlux 
US-Xng  46.77 − 100.92 578 GRA 8 101.02  0.89 4 % 2018–2020 AmeriFlux 
US-Xnw  40.05 − 105.58 3513 ENF 8 101.02  14.37 6 % 2018–2020 AmeriFlux 
US-Xsb  29.69 − 81.99 45 ENF 35 441.96  0.44 10 % 2018–2020 AmeriFlux 
US-Xse  38.89 − 76.56 15 DBF 62 782.91  3.47 10 % 2018–2020 AmeriFlux 
US-Xsj  37.11 − 119.73 368 SAV 39 492.47  8.66 7 % 2018–2020 AmeriFlux 

(continued on next page) 
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scattering kernels respectively characterized by the functions of the 
illumination and viewing geometry; fgeo and fvol are the weights of these 
two kernel functions; and fiso is the isotropic weight. 

Finally, we converted the simulated MODIS-like surface reflectance 
into the Sentinel-2-like surface reflectance with the band conversion 
coefficients between these two satellites (Eq. (2) and Fig. S1), which 
were derived from a linear regression approach using the RSR function 
profiles of Sentinel-2 and MODIS, together with 2394 samples of high- 
quality spectral data. These spectra include 815 samples from the 
Ground Object Background Spectral Library for Surveying and Mapping 
(GOSPEL) (Zhong et al. 2020), 119 samples from the book of quantita
tive remote sensing for land surfaces (Liang, 2004), 221 samples from 
the spectral library of typical objects in China (Wang et al. 2009), 47 
samples from the snow spectral datasets in Greenland (Qu et al. 2014), 
and 1192 samples from the USGS Digital Spectral Library (Clark et al. 
2007). Because the Sentinel-2 twin satellites have very similar spectral 
response curves (Fig. 5), we used the same band conversion coefficients 
for these two sensors with Eq. (2) as follows: 

ρS2

(

λi

)

= ai0 +
∑7

j=1
aij × ρMODIS

(

λj

)

(2)  

where ρS2 (λi) is the Sentinel-2-like surface reflectance at spectral band λi 
(i = 1, 2, 3, 4); ρMODIS (λj) is the MODIS-like surface reflectance at 
spectral band λj (j = 1, 2, 3, 4, 5, 6, 7); aij is the band conversion coef
ficient from MODIS spectral band λj to Sentinel-2 spectral band λi; and ai0 
is the constant coefficient at spectral band λi (Table 2). The close 
agreement between the converted Sentinel-2-like reflectance from 
MODIS-like reflectance and the directly simulated Sentinel-2-like 

reflectance suggests a high accuracy of the proposed band conversion 
coefficients (Fig. S1). 

We simulated datasets of shortwave albedo from the MODIS BRDF 
data in two steps: (1) generating the narrowband albedo of seven MODIS 
spectral bands by integrating the BRDF data over the illumination or 
viewing geometry (Lucht et al. 2000; Schaaf et al. 2002). Specifically, 
we integrated MODIS BRDF data over the viewing hemisphere and the 
illumination and viewing hemispheres to simulate the BSA and WSA 
datasets; (2) converting the narrowband albedo to shortwave albedo 
with the regression coefficients as suggested by Liang et al. (2002). 

3.1.2. Building LUTs from the simulated datasets 
With the pairs of the simulated Sentinel-2-like spectral reflectance 

and the associated shortwave albedo within the same angular bin, we 
used the linear regression approach to build the LUTs (i.e. reflectance- 
albedo relationship) that connect shortwave albedo (both BSA and 
WSA) with spectral reflectance (He et al. 2018; Qu et al. 2014) using 
following Eq.3: 

α = C0

(

θs, θv,φ

)

+
∑4

i=1
Ci

(

θs, θv,φ

)

× ρS2

(

λi

)

(3)  

where α is the surface shortwave albedo; ρS2 (λi) is the Sentinel-2-like 
surface reflectance at spectral band λi (i = 1, 2, 3, 4); and Ci (θs, θv, φ) 
denotes the regression coefficient at spectral band λi. 

We built up the LUTs in three steps. First, we fine-tuned the optimal 
sizes of the BRDF training sample and angular bin on the LUT building 
with two sensitivity analyses: (1) with the validating component of the 
MODIS data, we selected different angular bin sizes for algorithm 

Table 1 (continued ) 

Site name Latitude (◦) Longitude (◦) Elevation (m) Land cover type Tower height (m) Foot 
print (m) 

Slope 
(◦) 

CV Temporal range Network 

US-Xsl  40.46 − 103.03 1364 CRO 8 101.02  0.63 6 % 2018–2020 AmeriFlux 
US-Xsr  31.91 − 110.84 983 OSH 8 101.02  1.34 6 % 2018–2020 AmeriFlux 
US-Xst  45.51 − 89.59 481 DBF 22 277.81  0.89 10 % 2019–2020 AmeriFlux 
US-Xta  32.95 − 87.39 135 ENF 35 441.96  14.56 9 % 2018–2020 AmeriFlux 
US-Xtl  68.66 − 149.37 843 WET 9 113.65  1.16 8 % 2018–2020 AmeriFlux 
US-Xwd  47.13 − 99.24 579 GRA 8 101.02  1.14 4 % 2018–2020 AmeriFlux 
BOS  40.13 − 105.24 1689 GRA 10 126.28  1.19 10 % 2018–2020 BSRN 
BUD  47.43 19.18 139 GRA 10 126.28  1.65 8 % 2019–2020 BSRN 
GCR  34.25 − 89.87 98 GRA 10 126.28  0.83 2 % 2018–2020 BSRN 
NYA  78.93 11.93 11 GRA 10 126.28  3.56 0 % 2018–2020 BSRN 
TAT  36.06 140.13 25 GRA 10 126.28  2.18 9 % 2018–2020 BSRN 
BE-Bra  51.31 4.52 16 MF 24 303.06  5.49 7 % 2018/2020 EuropeFlux 
BE-Dor  50.31 4.97 247 GRA 10 126.28  3.70 4 % 2018/2020 EuropeFlux 
BE-Lon  50.55 4.75 167 CRO 10 126.28  0.93 4 % 2018–2020 EuropeFlux 
BE-Vie  50.3 6 493 MF 30 378.83  17.58 9 % 2018–2019 EuropeFlux 
CH-Cha  47.21 8.41 393 GRA 10 126.28  1.65 9 % 2018–2019 EuropeFlux 
CZ-Wet  49.02 14.77 425 WET 10 126.28  4.24 6 % 2018–2019 EuropeFlux 
DE-Geb  51.1 10.91 158 CRO 5 63.14  1.48 5 % 2018/2020 EuropeFlux 
DE-Hai  51.08 10.45 459 DBF 10.5 132.59  4.86 9 % 2019 EuropeFlux 
DE-Rur  50.62 6.3 512 GRA 10 126.28  3.06 7 % 2018–2020 EuropeFlux 
DE-Rus  50.87 6.45 102 CRO 10 126.28  2.94 6 % 2018–2020 EuropeFlux 
ES-Lm1  39.94 − 5.78 265 SAV 7 88.39  2.42 9 % 2018–2019 EuropeFlux 
ES-Lm2  39.93 − 5.78 272 SAV 6 75.77  5.22 8 % 2018–2019 EuropeFlux 
FR-Mej  48.12 − 1.8 39 GRA 10 126.28  2.93 2 % 2020 EuropeFlux 
IT-Cp2  41.7 12.36 17 EBF 13 164.16  1.55 5 % 2020 EuropeFlux 
IT-Lsn  45.74 12.75 1 OSH 10 126.28  1.85 2 % 2018–2020 EuropeFlux 
IT-Mtm  46.69 10.58 1480 GRA 10 126.28  26.56 6 % 2018/2020 EuropeFlux 
IT-Ren  46.59 11.43 1748 ENF 25 315.69  14.29 7 % 2019 EuropeFlux 
IT-Sr2  43.73 10.29 14 ENF 19 239.92  3.95 10 % 2018–2019 EuropeFlux 
IT-Tor  45.84 7.58 2162 GRA 3.5 44.2  18.21 10 % 2018–2020 EuropeFlux 
CN-Arou  38.05 100.46 2187 GRA 2.5 31.57  2.20 4 % 2019–2020 HiWaterWSN 
CN-Dsl  38.84 98.94 1695 BSV 2.5 31.57  3.66 3 % 2019–2020 HiWaterWSN 
CN-Jyl  37.84 101.12 2365 GRA 2.5 31.57  11.78 2 % 2019–2020 HiWaterWSN 
CN-Yak  38.01 100.24 2154 GRA 2.5 31.57  10.16 6 % 2019–2020 HiWaterWSN 
BON  40.05 − 88.37 230 CRO 10 126.28  1.53 4 % 2018–2020 SURFRAD 
DRA  36.62 − 116.02 1007 OSH 10 126.28  3.01 9 % 2018–2020 SURFRAD 
FPK  48.31 − 105.1 634 GRA 10 126.28  1.39 9 % 2018–2020 SURFRAD 
PSU  40.72 − 77.93 376 CRO 10 126.28  0.93 4 % 2018–2020 SURFRAD  
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training and validation. We found that the angular bin sizes of 2◦, 2◦, 2◦, 
and 5◦ for solar zenith angle, viewing zenith angle, solar zenith angle at 
local solar noon, and relative azimuth angle, respectively, could 
generate surface albedo with reasonable accuracy (Fig. 6 and Fig. S2), 
and thus used these optimal angular bin sizes in our algorithm; and (2) 
with the optimal angular bin size, we selected different BRDF training 
samples for algorithm training and validation, and found that the total 
sample size of 6000 could make the proposed algorithm stable with high 
accuracy (Fig. S3). With the flux measurements as benchmarks, we 
additionally assessed the effects of training sample representativeness 
on the final algorithm performance (Fig. S4). 

Second, we considered the topographic effects in generating 
reflectance-albedo LUTs with two assumptions. Firstly, we assumed that 
the MODIS BRDF parameter product was stable regardless of topography 
so that it could be used for generating BRDF over slopes. Secondly, we 
assumed that the topographic effects on 10-m Sentinel-2 surface 
reflectance were more dominated by the distortions of illumination and 
viewing geometry than the casting shadows and observation masks and 
the multiple-scattering among target slope and adjacent slopes (Wen 
et al. 2018, 2022; Wu et al. 2019). With these two assumptions, we used 
the local solar-viewing geometry (i.e. relative geometry between slope 
and solar or viewing sensor) as algorithm inputs to drive the LUTs (Lin 

et al. 2018, 2021). With the training component of MODIS data, we 
generated two types of LUTs for the BSA and WSA retrievals. 

Finally, we coupled the two LUTs of BSA and WSA with the GEE 
platform by using the default remap function to search regression co
efficients and retrieve surface albedo. It is noteworthy that since 
regional- and global-scale 10-m digital elevation model (DEM) datasets 
that spatially match Sentinel-2 resolution are very limited and have not 
yet been ingested into the GEE platform, we thus set the slope gradients 
to zero by default in our following regional and global albedo estimation 
and analysis, but we particularly considered topographic impacts in the 
accuracy assessment with 3-D model simulations and tower-based flux 
measurements. 

3.2. Validating the direct estimation algorithm 

The 3-D DART simulations, ground measurements, and MODIS ob
servations were used to evaluate the accuracy of Sentinel-2-derived 
surface albedo across three spatial levels ranging from the site, 
regional, to global scale. We first applied the developed algorithm to the 
DART simulated Sentinel-2-like reflectance to estimate surface albedo 
and compared the derived albedo with the DART simulated albedo. We 
then used this algorithm to estimate surface albedo from Sentinel-2 

Fig. 3. Lateral views of the Discrete Anisotropic Radiative Transfer (DART)-simulated 100-m × 100-m scenes with a 10-m spatial resolution across different 
landscape configurations, including (a) homogeneous grassland, (b) sparse forest, (c) medium dense forest, (d) dense forest, (e) unevenly distributed urban, (f) 
uniformly distributed urban, (g) sloping surface, and (h) rugged terrain. The aerial views of the DART-simulated scenes are listed as sub-subplots in the top right of 
each subplot. 
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satellite surface reflectance and conducted evaluations with the tower- 
based flux measurements and MODIS data. Three commonly used met
rics were used for accuracy assessments, including the bias, root-mean- 
square-error (RMSE), and coefficient of determination (R2). 

3.2.1. Estimating surface albedo using the developed LUTs 
Pre-built LUTs were used to estimate surface albedo from the DART 

simulated Sentinel-2-like reflectance data and Sentinel-2 satellite sur
face reflectance. 

(1) Retrieval of surface albedo from the DART simulated 
reflectance. With the DART simulated Sentinel-2-like surface reflec
tance and solar-viewing geometry, we retrieved surface albedo using the 
pre-built LUTs in Eq. (3) to estimate both BSA and WSA. 

(2) Retrieval of surface albedo from Sentinel-2 reflectance. We 
first used the cloud probability product with the s2cloudless algorithm 
provided by GEE to remove cloudy and shady Sentinel-2 pixels. With the 
cloud-free Sentinel-2 reflectance and solar-viewing geometry, we then 
used them as inputs for the pre-built LUTs in Eq. (3) to estimate both BSA 
and WSA. 

3.2.2. Assessing the proposed algorithm at a 10-m scale 
The absolute accuracy and uncertainty of the Sentinel-2-derived al

bedo were evaluated at a 10-m scale using the DART simulations and 
flux observations. We first compared the estimated pairs of BSA and 
WSA using our algorithm with the DART simulation pairs of BSA and 
WSA (Fig. 7, Figs. S5 and S6). We then compared the blue-sky albedo 

Fig. 4. Flowchart of the algorithm development, evaluation, and application. It includes four major subtasks: (a) building the direct estimation approach; (b) 
validating algorithm with model simulations; (c) validating algorithm with flux measurements and satellite observations; and (d) monitoring fine-scale sur
face dynamics. 
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derived from the Sentinel-2 observations with the flux measurements, 
making three considerations: (1) given that flux measurements are a mix 
of direct and diffuse illumination, we integrated the derived BSA and 
WSA to calculate blue-sky albedo using the fraction of diffuse skylight in 
two cases: (i) if the flux site recorded both direct and diffuse fluxes, 
ground-measured diffuse skylight fraction was used, and (ii) otherwise, 
a default value of 0.2 was used, according to He et al. (2018); (2) to 
minimize the potential impacts of unstable illumination on the flux 
measurements, we selected tower flux measurements between 11:00 a. 
m. and 1:00 p.m. local time to calculate ground albedo of the local solar 
noon; and (3) since most tower flux footprints are larger than one 
Sentinel-2 pixel size, we selected the Sentinel-2 pixels that centered on 
the tower flux footprint, and conducted the “point-to-pixel” evaluation 
by comparing ground albedo with the Sentinel-2 centered-pixel albedo 
(Fig. 8 and Fig. S7), together with a sensitivity analysis to explore the 

geometric mismatch effects with the 100-time repeated comparisons 
between ground albedo and the Sentinel-2 pixel observations randomly 
located within the tower flux footprints (Fig. S8). Third, we assessed the 
accuracy of the proposed algorithm across different snow cover condi
tions (Fig. S9), topographic slopes (Fig. S10), flux site networks 
(Fig. S11), and cross-year variations (Fig. 9, Figs. S12 and S13). We also 
compared our algorithm with other commonly-used alternatives, 
including the narrow-to-broadband (NTB) conversion method (Bonafoni 
and Sekertekin, 2020) and the MODIS-concurrent approach (Li et al. 
2018, Fig. S14). 

3.2.3. Assessing the proposed algorithm at a 500-m scale 
Subsequently, we assessed the large-scale mapping capability of the 

proposed algorithm by comparing the Sentinel-2-derived pairs of BSA 
and WSA with the MODIS BSA and WSA products at a 500-m scale in two 

Fig. 5. Relative spectral response (RSR) function profiles of the Sentinel-2 twin (Sentinel-2A and Sentinel-2B) and Moderate-Resolution Imaging Spectroradiometer 
(MODIS) satellites across different spectral domains, including four narrow spectral bands of blue, green, red, and near-infrared (NIR) for the Sentinel-2 twin sat
ellites and seven narrow spectral bands for the MODIS satellite. The RSR profiles of the MODIS satellite are labeled as gray. The RSR profiles of the Sentinel-2 
satellites are displayed as the sky blue, grass green, dark red, and slight yellow for the spectral bands of blue, green, red, and NIR, respectively, including solid 
lines for Sentinel-2A and dashed lines for Sentinel-2B. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Table 2 
Band conversion coefficients aij between Sentinel-2 and Moderate Resolution Imaging Spectroradiometer (MODIS) satellites, and the associated uncertainties in 
simulating spectral reflectance.  

j 0 1 2 3 4 5 6 7 RMSE 

i 

1 (Blue)  − 0.0004  0.7971  0.1363  0.0722  0.0027  − 0.0157  0.0205  − 0.0136  0.005 
2 (Green)  0.0006  − 0.0245  0.9584  0.0711  − 0.0062  0.0025  − 0.0073  0.0065  0.002 
3 (Red)  − 0.0013  0.0470  − 0.1926  1.1406  0.0054  − 0.0015  0.0067  0.0009  0.006 
4 (NIR)  − 0.0004  − 0.0291  0.1795  − 0.1307  0.9919  − 0.0169  − 0.0174  0.0335  0.007 

aij (i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5, 6, 7) is the conversion coefficient from the jth spectral band of MODIS to ith spectral bands (blue, green, red, and NIR) of Sentinel-2; a0 
is the associated constant coefficient (see Eq. (1)); RMSE refers to root-mean-square-error. 

Fig. 6. Sensitivity analysis showing the theoretical 
accuracies and uncertainties of the proposed direct 
estimation approach by using the simulated data
sets. The root-mean-square-error (RMSE) is derived 
from the comparison between the LUT-derived 
albedos and albedo benchmarks of the testing sam
ples. The LUT-derived albedos are estimated from 
the testing component of reflectance samples 
together with the proposed LUTs, and the albedo 
benchmarks are estimated from Moderate- 
Resolution Imaging Spectroradiometer (MODIS) 
BRDF data. The solid line and gray buffer refer to 
the mean and standard deviation of the fitted RMSE, 
respectively.   
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steps. First, we estimated surface albedos from Sentinel-2 in gridded tiles 
across 16 land cover types and four seasons (Fig. 2), and compared them 
with the corresponding MODIS albedo product with strict quality con
trol (quality bit index = 0) for regional-scale assessment (Figs. 10, 11 
and Figs. S15-S17). Second, we generated monthly means of global BSA 
and WSA from Sentinel-2 in June 2019, and compared them with the 
corresponding monthly means of global MODIS BSA and WSA for global- 
scale assessment. Specifically, the derived Sentinel-2 albedos were 
upscaled from their original resolution of 10 m to 500 m to match 
MODIS data resolution using an area-weighted averaging approach for 
regional- and global-scale assessments (Figs. 10-12 and Figs. S15-S18). 

3.3. Exploring practical applications of Sentinel-2 albedo 

We explored the potential of 10-m Sentinel-2 albedo in capturing 
fine-scale surface dynamics in terms of spatial and temporal character
istics, including two examples of detecting interspecific variations across 
temperate trees and discriminating interclass differences across urban 
rooftops, and two examples of monitoring leaf phenology and snow 
events. Because BSA is very close to WSA, we used the Sentinel-2- 
derived BSA as examples to demonstrate the practical applications of 
Sentinel-2 albedo. 

3.3.1. Detecting fine-scale spatial dynamics of land surface 
(1) Capturing interspecific variations across temperate trees. 

The high resolution of Sentinel-2 improves the capability of mapping 
tree species and assessing interspecific variations. We used the Sentinel- 
2-derived albedo to detect interspecific variations of one mixed 
temperate forest stand in Brandenburg, Germany. This forest stand 
(53◦00′00′′—53◦00′32′′N, 13◦46′48′′—13◦49′19′′E, site #q in Fig. 2) 
spans an area of 3 km × 0.7 km and contains 8 dominant tree species, 
including Common red alder, Common sessile oak, Douglas fir, European 
ash, European beech, European Japanese larch, Norway spruce, and Scots 
pine (Fig. 13). More details on the forest compositions of this site can be 
found in Hemmerling et al. (2021). With the vector maps of dominant 
tree species from the forest inventory data, we extracted the time series 
of vegetation albedo across tree species by cropping the estimated 
Sentinel-2 albedo time series in 2019, and then assessed the interspecific 
variations (Fig. 13). Using the same approach, we also estimated and 
presented the results of the 30-m resolution Landsat satellite for 
comparison. 

(2) Capturing interclass variations across urban roofs. The 
ability of high-resolution Sentinel-2 albedo to capture fine-scale char
acteristics of built-ups was evaluated at one urban site in Beijing, China. 
This site is located south of Beijing (39◦47′35′′—39◦48′04′′N, 
116◦23′56′′—116◦24′ 50′′E, site #r in Fig. 2) and occupies an approxi
mate 1-km × 1-km area displaying a variety of colored rooftops. With 
the high-resolution Google Earth imagery, we first visually identified 
each building roof and manually drew the rooftop map with the region 
of interest (ROI) of different colors. We then overlapped the manual 

Fig. 7. Accuracy assessments of the proposed algorithm by using the Discrete Anisotropic Radiative Transfer (DART)-simulated black-sky albedo (BSA) across 
different landscape configurations, including (a) homogeneous grassland, (b) sparse forest, (c) medium dense forest, (d) dense forest, (e) unevenly distributed urban, 
(f) uniformly distributed urban, (g) sloping surface, and (h) rugged terrain. N indicates the number of simulated surface albedo used for comparison; Bias is the 
difference between the pairs of Sentinel-2-like and DART-simulated BSAs; RMSE is the root-mean-square-error; R2 is the coefficient of correlation. Black solid lines 
show the 1:1 line. The black dashed lines show the error lines of − 0.05 and 0.05 between the Sentinel-2-like BSAs and DART-simulated BSAs. 
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ROIs with the Sentinel-2 albedo time series in 2019 and extracted the 
time series of rooftop albedos. We lastly compared the extracted albedos 
across different urban rooftops (Fig. 14). With the same approach, we 
also estimated and extracted the Landsat satellite results of rooftop 
albedos for comparison (Fig. S19). 

3.3.2. Monitoring fine-scale temporal dynamics of land surface 
Two phenocam sites of the National Ecological Observatory Network 

(NEON) were selected to demonstrate the advantage of Sentinel-2 

albedo in monitoring fine-scale temporal trajectory of land surface, 
including the leaf phenology of one forest site and the snow events of 
one agricultural site. 

(1) Capturing leaf phenology of temperate trees. We evaluated 
the capability of Sentinel-2 albedo in capturing leaf phenology using the 
phenocam observations of the Casey Tree Farm in the Blandy Experi
mental Farm (BLAN) site in Virginia, USA. This forest site (39◦02′01′′N, 
78◦02′30′′W, site #s in Fig. 2) includes a mix of land-use types, including 
woodland, tree nurseries, and hay fields. The tower-top RGB (i.e. red, 

Fig. 8. Site-scale examples showing density scatter plots of the Sentinel-2-derived surface albedo and in situ albedo at local flux sites across five land cover types, 
including (a) overall, (b) cropland (CRO), (c) deciduous broadleaf forest (DBF), (d) evergreen needleleaf forest (ENF), (e) grassland (GRA), and (f) open shrubland 
(OSH); N indicates the number of Sentinel-2 observations used for comparison; Bias is the difference between the observational pairs of the Sentinel-2-derived and in 
situ albedos; RMSE is the root-mean-square-error; R2 is the coefficient of correlation. Black solid lines show the 1:1 line. The black dashed lines show the error lines of 
− 0.05 and 0.05 between the satellite data and ground measurements. 

Fig. 9. Site-scale examples showing seasonality comparisons between the Sentinel-2 estimations and in situ observations of surface albedo across six land cover types, 
including (a) cropland (CRO), (b) deciduous broadleaf forest (DBF), (c) evergreen needleleaf forest (ENF), (d) grassland (GRA), (e) open shrubland (OSH), and (f) 
wetland (WET). The paired data of Sentinel-2 observations that centered on the flux site footprints and ground measurements in 2019 are used here for 
demonstration. 
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green, and blue) camera observations of an 8-m flux tower were used to 
measure leaf phenology dynamics. Using the Sentinel-2 imagery 
collection in 2019, we first extracted and analyzed the albedo and 
enhanced vegetation index (EVI) time series of the Sentinel-2 pixel 
centered on the flux footprint, then compared them with the RGB 
camera observations (Fig. 15a). We also compared our results with the 
albedo time series of the Landsat pixel located at the same site. 

(2) Capturing snowfall and snowmelt events. We assessed the 
ability of Sentinel-2 albedo in monitoring rapid snowfall and snowmelt 
events using the phenocam observations of the North Sterling (STER) 

site in Colorado, USA. This agricultural site (40◦27′43′′N, 103◦01′45′′W, 
site #t in Fig. 2) cultivates a variety of crops, including winter wheat, 
millet, and maize. We used the tower-top RGB camera observations of an 
8-m flux tower to measure cropland dynamics and compared them with 
the albedo and EVI time series of the central Sentinel-2 pixel within the 
flux footprint (Fig. 15b). We also compared our results with the albedo 
time series of the Landsat satellite. 

Fig. 10. Regional-scale examples showing the spatial comparisons of surface black-sky albedo (BSA) between Sentinel-2 and Moderate-Resolution Imaging Spec
troradiometer (MODIS) satellites across two land cover types, including (a, b, c, d) true-color (RGB = red–green-blue) composited Sentinel-2 image, (a1, b1, c1, d1) 
Sentinel-2-derived BSA, and (a2, b2, c2, d2) MODIS-derived BSA. Panels (a-a2) show the results for cropland (CRO); panels (b-b2) show the results for the subset of 
the panels (a-a2) that indicated by the red rectangles; panels (c-c2) show the results for evergreen needleleaf forest (ENF); and panels (d-d2) show the results for the 
subset of the panels (c-c2) that indicated by the red rectangles. The dominant land cover type with the corresponding fractions (in parentheses) were extracted from 
MCD12Q1, and the observation dates are listed at the bottom left of each Sentinel-2 RGB image. The clear-sky satellite images in summer in 2019 are used here for 
demonstration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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4. Results 

4.1. Uncertainty of the direct estimation approach 

We assessed the theoretical accuracy and uncertainty of the proposed 
direct estimation approach using the validating component of the 
MODIS sampling data. As shown in Fig. 6, the mean of the fitted RMSE in 
simulating shortwave albedo increased from 0.017 to 0.050 when the 
local solar zenith angle increased from 0◦ to 80◦. Specifically, the mean 
RMSE was less than 0.020 when the local solar zenith angle was lower 
than 60◦, which suggests the high accuracy of the proposed approach for 

estimating surface albedo from Sentinel-2 satellites. Our results showed 
that the direct estimation approach is relatively insensitive to the 
changes in angular bin size of illumination and viewing geometry 
(Fig. S2), with slight increases in the maximum RMSEs of 0.035, 0.025, 
and 0.019 for an increasing bin size from 0◦ to 40◦ for the local solar 
zenith angle, solar zenith angle, and relative azimuth angle, respec
tively. Our results also showed that algorithm accuracy increased with 
the size of the BRDF training samples (Fig. S3), with the mean RMSE 
ranging from 0.056 to 0.017 for an increasing sample size from 500 to 
6000 and remaining stable when the sample size was larger than 6000. 
With flux measurements as benchmarks, our results further revealed 

Fig. 11. Regional-scale examples showing the density scatter plots of the Sentinel-2 and Moderate-Resolution Imaging Spectroradiometer (MODIS) black-sky albedo 
(BSA) across different gridded tiles with two distinct dominant land cover types in 2019, including (a) overall, (b) cropland (CRO), and (c) evergreen needleleaf 
forest (ENF). The Sentinel-2 and MODIS data across four seasons of spring, summer, fall, and winter in 2019 (one image per season) are used to calculate the averaged 
surface albedo. The Sentinel-2-derived BSA is resampled from the original resolution of 10 m to the 500-m spatial resolution of MODIS for cross-comparison. N 
indicates the number of Sentinel-2 observations used for comparison; Bias is the difference between the observational pairs of Sentinel-2-derived and MODIS BSAs; 
RMSE is the root-mean-square-error; R2 is the coefficient of correlation. 

Fig. 12. Global-scale maps of spatial variation in monthly mean of black-sky albedo (BSA) in June 2019, including (a) 500-m aggregated Sentinel-2-derived BSA, and 
(b) 500-m Moderate-Resolution Imaging Spectroradiometer (MODIS)-derived BSA. (c) the difference between the MODIS-derived BSA and aggregated Sentinel-2- 
derived BSA; and (d) density scatter plot of MODIS-derived BSA and aggregated Sentinel-2-derived BSA. The result of Antarctica is not shown here as there were 
not available Sentinel-2 observations in June 2019. 
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that increasing the representativeness of BRDF training samples can 
significantly improve algorithm performance (Fig. S4). 

4.2. 10-m scale accuracy assessment of the direct estimation approach 

The absolute accuracy of the proposed direct estimation approach in 
estimating surface albedo from Sentinel-2 was evaluated against the 3-D 
DART simulations and ground measurements from local flux sites. When 
compared with the DART simulations, the direct estimation approach 
presented high accuracy across different landscape configurations (bias 
= -0.010–0.012, RMSE = 0.015–0.020, R2 = 0.73–0.98 for BSA; bias =
-0.010–0.010, RMSE = 0.014–0.022, R2 = 0.70–0.97 for WSA; overall 
RMSE = 0.018, overall bias = 0.005, overall R2 = 0.88; Fig. 7 and 
Fig. S5). The low pixel-scale RMSE map also suggests the high accuracy 
of the direct estimation approach (Fig. S6). When compared with ground 
measurements, as shown in Fig. 8, the ground flux towers detected 
significant variations in surface albedo with ranges from 0.065 to 0.907 
across different land cover types. Our results demonstrated that the 
Sentinel-2 satellite accurately captures variations in surface albedo, 
showing an overall high agreement with ground measurements across 
all flux sites (bias = -0.004, RMSE = 0.030, R2 = 0.94) and different land 
cover types (bias = -0.023–0.011, RMSE = 0.015–0.042, R2 =

0.40–0.99; Fig. 8, Figs. S7 and S8). Our results also showed that the 
Sentinel-2 satellite closely tracked albedo variations over snow-free and 
snow-covered surfaces (bias = -0.003, RMSE = 0.027, and R2 = 0.62 for 
snow-free surface; bias = -0.009, RMSE = 0.060, R2 = 0.84 for snow- 
covered surface; Fig. S9), flat and rugged slopes (bias = -0.004, RMSE 
= 0.029, R2 = 0.94 for slope less than 5◦; bias = -0.006, RMSE = 0.031, 
R2 = 0.96 for 5◦< slope less than 10◦; and bias = 0.003, RMSE = 0.040, 
R2 = 0.97 for slope greater than 10◦; Fig. S10), flux networks (Fig. S11), 
and cross-year dynamics (Figs. S12 and S13). Our sensitivity analysis 
results regarding the geometric match effects between flux footprint and 
Sentinel-2 pixel show the feasibility of the proposed evaluation strategy 

for selecting representative flux sites and conducting direct comparisons 
(bias = -0.005–0.006, RMSE = 0.028–0.035, R2 = 0.82–0.98; Fig. S8). 
The sensitivity analysis of model comparisons showed a better perfor
mance of the proposed direct estimation approach compared with 
similar alternatives (i.e. the NTB conversion method and MODIS- 
concurrent approach; Fig. S14). 

Our evaluations show that Sentinel-2 and flux tower observations 
detected significant seasonality in surface albedo caused by leaf 
phenology or surface changes across different land cover types (Fig. 9). 
Deciduous broadleaf forest (DBF) exhibited a leaf phenology-driven 
seasonality with increasing albedo for the green-up stage and 
decreasing albedo for the leaf senescence stage (Fig. 9b). Evergreen 
forest (ENF) showed a relatively stable albedo pattern across seasons 
except for the increasing pattern in spring and winter due to snowfall 
events (Fig. 9c). In contrast, cropland (CRO) displayed a human-driven 
seasonality with many variabilities in albedo that might have been 
disturbed by management activities (e.g. increasing albedo patterns in 
the growing phase augmented by decreasing soil moisture and abrupt 
drops in albedo magnitude caused by irrigation practices; Fig. 9a). 
Wetland presented an increasing albedo seasonality likely due to 
decreasing seasonal soil moisture (Fig. 9f). Compared with the other 
land cover types, grassland (GRA) and open shrubland (OSH) showed far 
fewer albedo variations across seasons (Fig. 9d-e). Our results also 
showed that the surface albedos derived from Sentinel-2 have similar 
seasonality patterns with the ground measurements across different land 
cover types (Fig. 9) and inter-annual cycles (Fig. S13). 

4.3. 500-m scale accuracy assessment of the direct estimation approach 

We evaluated the capability of the proposed direct estimation 
approach in large-scale albedo mapping by comparing the Sentinel-2- 
derived surface albedo with MODIS albedo product across both indi
vidual gridded tile and global coverage. As shown in Fig. 10a-a2, 10c-c2, 

Fig. 13. Examples showing the capability of the Sentinel-2 albedo in capturing interspecific variations, including (a) high-resolution true-color (RGB = red–green- 
blue) composited imagery from Google Earth in 2019, (b) dominant tree species based on forest inventory data, (c) Sentinel-2-derived albedo, (d) Landsat-8-derived 
albedo, (e) time series of Sentinel-2-derived albedo across tree species, (f) time series of Landsat-8-dereived albedo across tree species, and (g) comparisons between 
Sentinel-2- and Landsat-8-derived albedo on the same day. Panels (a) and (b) are adapted from Hemmerling et al. 2021. BSA refers to black-sky albedo. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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and Fig. S15, both the Sentinel-2 and MODIS gridded tiles showed large 
variations in the extracted surface albedo across spatial regions and 
different land cover types. Compared with the MODIS albedo with a 
relatively coarse resolution of 500 m, our local zoom-in results show that 
Sentinel-2 detected much more detail on the spatial characteristics of 
surface albedo in specific regions, such as the heterogeneous agricultural 

mosaics of cropland (Fig. 10b-b2) and disturbance patches of evergreen 
forest (Fig. 10d-d2). The 500-m scale assessment results show that the 
surface albedos derived from Sentinel-2 were overall comparable with 
the albedos derived from MODIS across gridded tiles (bias = 0.021, 
RMSE = 0.030, R2 = 0.97; Fig. 11a) and different land cover types (bias 
= 0.008–0.048, RMSE = 0.011–0.060, R2 = 0.47–0.98; Fig. 11b-c and 

Fig. 14. Examples showing the capability of the Sentinel-2 black-sky albedo (BSA) in detecting urban rooftops, including (a) high-resolution true-color (RGB =
red–green-blue) composited imagery from Google Earth in 2019; (b) Sentinel-2-derived BSA, (c-i) examples of the building rooftops with different colors, (j) time 
series of Sentinel-2 BSA across building roofs. The rooftop boundaries in panels (a) and (b) are visually identified from high-resolution Google Earth imagery. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Examples showing the capability of the Sentinel-2 black-sky albedo (BSA) in monitoring surface temporal dynamics, including (a) leaf phenology; and (b) 
snowfall and snowmelt events. The Landsat albedo and Sentinel-2 enhanced vegetation index (EVI) are shown for comparison. Ti (i = 1, 2, 3, 4, 5, 6, 7, and 8) is 
observation date. 
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Fig. S16). Our results also showed the high consistency between 
Sentinel-2- and MODIS-derived BSA and WSA (bias = 0.008, RMSE =
0.013, R2 = 0. 81 for BSA; bias = 0.010, RMSE = 0.16, R2 = 0.77 for 
WSA; Fig. S17). 

Our global-scale comparison maps of two satellites presented similar 
spatial patterns in surface albedo, with large albedos at the North Pole 
covered by permanent snow (e.g. Greenland), African regions and 
Australia characterized by desert or dryland, and mountainous areas of 
the North American Cordillera, Andes, Appalachians, Alps, and Hima
layas (Fig. 12a-b and Fig. S18a-b). Our results also showed close spatial 
consistency between pixel-level Sentinel-2 and MODIS albedos, with a 
maximum bias of less than 0.02 across 45.9 % of the global areas 
(Fig. 12c and Fig. S18c). Overall, the Sentinel-2-derived surface albedos 
were highly comparable with those from MODIS at the global scale (bias 
= 0.015, RMSE = 0.048, R2 = 0.93 for both BSA and WSA; Fig. 12 and 
Fig. S18). 

4.4. Fine-scale surface dynamics from Sentinel-2-derived albedo 

We assessed the potential of the Sentinel-2 albedo for monitoring 
tree albedo variations, discriminating built-ups, and capturing leaf 
phenology and snow events. We first mapped the pixel-scale albedos of 
Sentinel-2 and Landsat over the forest stand (Fig. 13). These maps 
showed that there were large spatial variations in the estimated albedo 
across the entire landscape, with higher values in the northern and 
eastern regions and lower values in the southern and western regions 
(Fig. 13c-d). Due to the higher spatial resolution, Sentinel-2 albedo 
exhibited many more spatially heterogenous characteristics than Land
sat albedo (Fig. 13c vs Fig. 13d). When overlapping these albedo maps 
with the dominant tree species map (Fig. 13b), we quantified the albedo 
variations at the interspecific and intraspecific levels and found large 
seasonal variations within and across tree species (Fig. 13e-g). At the 
interspecific level, our results showed that European ash has the largest 
species-level mean albedo, followed by Common sessile oak, European 
beech, Common red alder, Douglas fir, European Japanese larch, Scots pine, 
and Norway spruce. At the intraspecific level, our results showed that 
European beech has the largest variability (indicated by the standard 
deviation of albedo within the same species), followed by Norway spruce, 
Common red alder, Common sessile oak, Douglas fir, European Japanese 
larch, Scots pine, and European ash. Our comparative results between 
these two satellites demonstrated that Sentinel-2 has many more 
frequent observations than Landsat (observation number of 43 vs 13 
within a one-year cycle) and can detect both interspecific and intra
specific albedo variations, while Landsat shows less capability in 
detecting intraspecific albedo variations (Fig. 13e vs Fig. 13f). 

We then mapped the pixel-scale albedos of Sentinel-2 over the built- 
up area (Fig. 14). The resulting map showed large spatial variations of 
the estimated albedo across the entire urban area, with observed higher 
values over the light-colored rooftops and lower values over the dark- 
colored rooftops. By overlapping the albedo results with the manual 
rooftop map, we quantified the albedo variations within and across 
colors, and found that the light-colored rooftops showed larger class- 
level mean albedo and within-class albedo variations (indicated by the 
standard deviation of albedo within the same color) than the dark- 
colored rooftops (Fig. 14b vs Fig. 14j). Our results also showed a 
greater potential of Sentinel-2 relative to Landsat in discriminating 
different colored urban roofs due to the larger interclass Sentinel-2- 
derived albedo variability (Fig. 14 vs Fig. S19). 

Lastly, we extracted and analyzed the albedo and EVI time series 
over the forest and agricultural sites. As shown in Fig. 15, phenocam 
RGB images clearly illustrated the key stages of leaf phenology and 
snowfall and snowmelt events. The extracted Sentinel-2 EVI showed two 
different seasonality patterns between forest and cropland. The value of 
forest EVI remained low during the dormant period (i.e. timing T1 to T2), 
increased in the leaf green-up phase (i.e. timing T2 to T4) previous to the 
stable leaf peak stage (i.e. timing T4 to T5), decreased in the leaf 

senescence phase (i.e. timing T5 to T7), and reverted back to the dormant 
stage (i.e. timing T7 to T8, Fig. 15a). By contrast, cropland EVI presented 
more rapid leaf green-up and senescence stages with a double-cropping 
cycle within one year (Fig. 15b). When comparing the temporal dy
namics between EVI and albedo, as shown in Fig. 15a, Sentinel-2 albedo 
closely tracked EVI seasonality with an increasing pattern during the 
leaf green-up stage and a decreasing pattern during the leaf senescence 
stage, suggesting the potential of using Sentinel-2 in monitoring 
phenology-related biophysical processes. Additionally, Sentinel-2 al
bedo demonstrated its capability of capturing the rapid temporal tra
jectory of snow events with different snowfall magnitudes. For example, 
as shown in Fig. 15b, Sentinel-2 albedo detected a total of three snowfall 
and snowmelt events (i.e. timing T1-T3, T3-T5, and T6-T8). Due to the 
relatively lower temporal resolutions, Landsat albedo presented fewer 
informative observations on leaf phenology and snow events. 

5. Discussion 

The accurate monitoring of fine-scale surface albedo over large 
spatial coverages has fostered increasing research interests. However, 
large uncertainties remain in estimating the fine-scale surface albedo 
from current satellites due to their coarse spatial and temporal resolu
tions (Li et al. 2018; Qu et al. 2014; Shuai et al. 2014; Wang et al. 2018). 
We addressed this challenge by integrating the high-resolution Sentinel- 
2 images with an improved direct estimation approach. Our approach 
allows for direct albedo estimation from Sentinel-2 reflectance without 
the comprehensive retrieval of physical BRDF models requiring multi- 
angular observations within a short time. Using this approach, we 
found that Sentinel-2 albedo agreed well with the DART simulations, 
ground measurements, and MODIS satellite product, and accurately 
detected the spatial–temporal trajectory of land surface at a 10-m scale. 
These multi-faceted evaluations demonstrate the great feasibility of 
using Sentinel-2 data for mapping fine-scale surface albedo to advance 
our understanding of multiple biophysical and biogeochemical 
processes. 

Our proposed approach is similar to the previous direct estimation 
model framework, but introduces further advances. As similarly done in 
previous studies (He et al. 2018; Liang et al. 1999; Qu et al. 2014; Zhang 
et al. 2020b), we used the BRDF/albedo data of a coarse-resolution 
satellite to pre-train the reflectance-albedo relationship. Differently, 
we included additional information on high-resolution land cover to 
ensure sample representativeness and considered topographic impacts 
to improve the model’s applicability over rugged areas. Moreover, our 
study presents three additional advancements. First, it is one of the few 
studies that estimate surface albedo from optical satellites at such a high 
spatial resolution. Previous studies have primarily focused on satellites 
with coarse spatial resolution ranging from several hundred meters (e.g. 
MODIS and VIIRS; Liu et al. 2017; Wang et al. 2018; Wu et al. 2017; 
Zhou et al. 2016) to tens of meters (e.g. Landsat; Baldinelli et al. 2017; 
Franch et al. 2014; He et al. 2018; Shuai et al. 2011). Although Sentinel- 
2 alone, or together with Landsat, has been previously used for esti
mating surface albedo in agricultural and grassland ecosystems (Li et al. 
2018), urban environments (Baldinelli et al. 2017; Guo et al. 2022), and 
tropical forests (Franch et al. 2018), the generalizable albedo estimation 
approach over random land covers for Sentinel-2-similar satellites with 
few angular observations and spectral band configurations has rarely 
been explored. Second, topography significantly impacts surface albedo 
(Hao et al. 2018; Ma et al. 2022; Wu et al. 2018), but has rarely been 
integrated in the albedo retrieval algorithm. In our approach, we 
accounted for the topographic effects and assessed these effects using 
both DART simulations and ground measurements. Third, to the best of 
our knowledge, this study is the first attempt to integrate the direct 
estimation approach with GEE cloud-computing to enable large-scale 
computation capability. Our experiments show that estimating surface 
albedo of one Sentinel-2 gridded tile (c. 110 km × 110 km) with the GEE 
service requires only a few minutes (i.e. 3–10 min), which suggests the 
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promising possibility of generating a global, 10-m surface albedo 
product. 

Our examples of Sentinel-2 albedo applications demonstrate the 
great potential of using the proposed approach or data to advance 
albedo-related fields. Firstly, Sentinel-2 albedo sheds light on multiple 
important implications related to agriculture, forestry, and urban fields. 
For example, it can be used to help detect forest phenology (Figs. 9b-c, 
15a, and S13b; Alibakhshi et al. 2020; Berbet and Costa, 2003; Wang 
et al. 2018; Williamson et al. 2016), improve cropland management 
practices (Figs. 9a, 15b and S13a; Davin et al. 2014; Lobell et al. 2006; 
Miller et al. 2016; Singarayer et al. 2009), monitor grassland growth 
(Fig. 9d and S12d; Abraha et al. 2021; Sciusco et al. 2020; Wang and 
Davidson, 2007; Zheng et al. 2021), renew urban built-up infrastructure 
(Fig. 14), and infer snow events (Fig. 15b). Secondly, Sentinel-2 albedo 
further allows the monitoring of fine-scale biophysical or biogeochem
ical processes. For example, it can be used to infer forest dynamics by 
linking forest albedo with the structural and compositional properties of 
trees (e.g. leaf area, canopy height, forest age, and species composition; 
Alibakhshi et al. 2020; Bright et al. 2018; Hovi et al. 2019; Kuusinen 
et al. 2014, 2016). It can also be used to assess urbanization activities by 
relating surface albedo to urban metrics (e.g. impervious cover fraction, 
urban greenspace, population density, and urban heat island; Kaplan 
et al. 2016; Trlica et al. 2017). More importantly, because the spatial 
resolution of Sentinel-2 is finer than or equal to most tree-crown di
ameters (Bush et al. 2020; Wu et al. 2021), it also offers a promising way 
to monitor individual-tree albedo which can improve our understanding 
of the individual-to-ecosystem scaling mechanisms of albedo-related 
ecological processes. Thirdly, this approach can produce a unique 
high-resolution surface albedo dataset from 2017 onward, which could 
be used to constrain the parameterization of Earth System Models in 
simulating the surface energy budget (Bonan and Doney, 2018; Brovkin 
et al. 2021), assess the impacts of human activity on global warming 
(Wohlfahrt et al. 2021; Zeng et al. 2021), and improve the future pro
jection of climate change (Li et al. 2016; Ouyang et al. 2022; Wang et al. 
2016a). Such a dataset would also benefit the remote sensing commu
nity, for instance, in refining algorithm development to generate high- 
resolution satellite albedo (Li et al. 2018). Lastly, our integrated eval
uation framework provides a novel multi-scale protocol for assessing the 
accuracy of high-resolution satellite albedo. The use of 3-D radiative 
transfer model simulation, in particular, can offer valuable benchmarks 
when fine-scale ground measurements are lacking. This evaluation 
framework is transferable and applicable to other satellite sensors (e.g. 
Gaofen-2 and PlanetScope; Houborg and McCabe, 2018; Vos et al. 2019) 
with equivalent or superior spatial resolution compared to Sentinel-2. 

Despite the successful implementations of our algorithm develop
ment, evaluation, and application, there are still several limitations that 
might cause a degree of uncertainties about our results and should be 
solved in future efforts. Firstly, regarding algorithm development, our 
validation results reveal that Sentinel-2 albedo shows a larger uncer
tainty over snow cover relative to snow-free surfaces because of the 
relatively poor-quality snow BRDF data from MODIS. Therefore, an 
integration of the snow physical BRDF models (e.g. the asymptotic 
radiative transfer (ART) model; Jiao et al. 2019; Qu et al. 2014) with 
high-resolution satellite data (e.g. 3-m PlanetScope with daily revisit; 
Cannistra et al. 2021; Planet Team, 2021; Roy et al. 2017, 2021; Wu 
et al. 2021) could improve the accuracy of our approach in mapping 
albedo over snow surfaces (Stroeve et al. 2006; Wang et al. 2012). 
Moreover, the spatial resolution differences between MODIS BRDF 
training samples and Sentinel-2 reflectance might also lead to some 
uncertainties. Thus, the physical BRDF models or their associated 
kernel-driven functions accounting for fine-scale surface characteristics 
(e.g. 3-D building morphology and topography relief) are expected to 
provide more accurate and representative BRDF datasets. Secondly, 
regarding algorithm evaluation, the lack of ground reference at high- 
resolution footprints makes the pixel-scale albedo evaluation a diffi
cult task. Thus, we suggested that more ground measurements with flux 

footprints strictly matching the Sentinel-2 spatial resolution to be con
ducted to provide more reliable albedo benchmarks. Integrating un
manned aerial vehicles (UAVs) with hyperspectral imaging technology 
could also generate valuable references for evaluating satellite albedo. 
Additionally, the area-weighted aggregation approach used in this study 
without accounting for surface heterogeneity might also create some 
uncertainties in the albedo comparison between Sentinel-2 and MODIS. 
The multi-scale aggregation strategy involving the 3-D physical radia
tive transfer process (Lin et al. 2018, 2021) is suggested to be developed 
for albedo comparisons across satellites. Lastly, cloud cover and shadow 
cause critical data discontinuity in surface albedo. Therefore, gap-filling 
approaches should be developed to fill data gaps when generating long- 
term, 10-m surface albedo products for large-scale analysis (e.g. albedo 
changes due to vegetation greening and urbanization; Guo et al. 2022; Li 
et al. 2016). 

6. Conclusions 

The accurate mapping and monitoring of fine-scale surface albedo 
are essential to quantify the biophysical processes of natural dynamics 
and anthropogenic activities. In this study, we proposed a direct esti
mation approach to advance our capability of estimating high-quality 
and high-resolution surface albedo from 10-m Sentinel-2 satellites. 
Our results demonstrate that Sentinel-2 can accurately capture surface 
albedo and agree well with the 3-D DART simulations, ground mea
surements, and MODIS satellite product at the site, regional, and global 
scales. The pilot study demonstrates the promise of integrating the 
proposed approach with Sentinel-2 to map large-scale surface albedo at 
a 10-m spatial resolution and capture fine-scale surface dynamics. This 
will enhance Sentinel-2 data science, facilitate high-resolution surface 
energy balance mapping, monitoring and modeling, and further 
contribute to global change research. 
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