HARMU:一种多波段约束的异源传感器波谱协调方法

全球卫星遥感数据的协同应用对陆地生态系统动态监测至关重要,然而不同传感器间的光谱差异将导致下游应用出现系统性偏差。针对这一问题,课题组开发了一种基于机器学习的多波段约束反射率协调方法—HARMU,有效解决了Landsat 8(OLI)与Sentinel-2(MSI)之间的光谱不一致问题。研究结果表明,HARMU在提升数据一致性方面显著优于现有方法,为全球植被参数反演和时间序列分析提供了全新工具。该成果近期发表于遥感领域顶刊《IEEE Transactions on Geoscience and Remote Sensing》。

研究背景:

Landsat 8与Sentinel-2组成的虚拟星座虽能提供平均每2.9天的十米级观测数据,但两者的地表反射率产品存在显著差异。OLI与MSI的可见光与近红外波段虽部分重叠,但红边(MSI B5-B7)及宽近红外(MSI B8)等波段缺乏对应配置,且两者大气校正方法(LaSRC与Sen2Cor)导致蓝波段与短波红外波段存在系统性偏差。传统线性回归方法(如HLS产品)依赖静态系数,仅适用于光谱重叠波段,无法处理非重叠波段,并在面对复杂地表类型的时空异质性时表现有限。因此,亟需开发一种能够实现全波段光谱协调、兼具物理一致性与时空泛化能力的光谱协调方法。

研究方法:

本文提出的多波段反射率协调方法HARMU,基于机器学习算法挖掘不同传感器波段间的非线性关系。与传统的一一对应波段回归策略不同,HARMU使用源传感器的所有波段信息协同预测目标传感器的单个波段反射率,从而充分利用波段间的光谱关联性。具体而言,HARMU采用高斯过程回归构建Landsat 8 OLI与Sentinel-2 MSI反射率之间的非线性映射关系。HARMU模型在全球代表性站点BELMANIP2.1上进行了训练与交叉验证。使用Google Earth Engine获取2019-2021年期间OLI与MSI的原始影像,并筛选配对时间差不超过1天的高质量无云样本。最终获得共计9535个样本对(站点×日期),其中41%为同一日期,59%相差一天。

主要结果:

HARMU方法在跨传感器反射率协调中展现出显著优势。基于BELMANIP2.1站点2019–2021年数据的交叉验证结果(图1)表明,HARMU生成的Sentinel-2 MSI反射率(基于Landsat 8反射率)在所有波段上与对应的观测值高度一致,公共波段(如Red、NIR)R²均超过0.91,重建的红边波段(RE1、RE2、RE3)无明显系统偏差,充分证明了方法的高精度与稳定性。在GBOV独立验证站点,HARMU在多种植被类型下均表现稳定(图2),即使在样本较少的常绿针叶林(ENF)中,R²仍维持在0.81以上,显示出其对复杂地表的强适应性。在区域尺度上的应用显示(图3),HARMU协调后的多波段假彩色影像与原始Sentinel-2高度一致。红边和近红外波段的偏差在森林、湿地和农田等常见土地覆盖类型中整体控制在0.02–0.04以内,在植被密集区偏差趋近于零。这些结果表明,HARMU在站点和区域尺度均具备良好泛化能力和鲁棒性。

图1. HARMU方法重建Sentinel-2反射率(基于Landsat 8 OLI反射率)的密度散点图(BELMANIP2.1站点交叉验证)
图2. 不同植被类型的HARMU方法重建Sentinel-2反射率(基于Landsat 8 OLI反射率)的散点图(GBOV站点独立验证)
图3. HARMU方法区域尺度重建性能。(a)观测Sentinel-2假彩色合成影像;(b)HARMU重建的Sentinel-2假彩色影像;(c)NLCD 2021地表覆盖图;(d)RE1波段反射率偏差空间分布;(e)Nir-8A波段偏差分布;(f)各波段偏差箱线图

研究结论:

本研究提出的光谱协调方法具备全波段适用性,兼顾物理机制约束与时空推广能力,为Landsat-Sentinel虚拟星座的一体化数据融合提供了关键支撑。后续将进一步拓展其在水体、冰雪与城市等复杂地表类型中的适用性,并部署于Google Earth Engine平台,推动全球尺度的高效遥感数据处理与应用实现。

文章信息

Wang, Changjing, Gaofei Yin, Rui Fu, Adrià Descals, Wenjuan Li, Marie Weiss, Frédéric Baret, and Aleixandre Verger. “HARMU: A multiband sensor harmonization for building virtual constellations. Application to Landsat 8 and Sentinel-2.” IEEE Transactions on Geoscience and Remote Sensing (2025). DOI: 10.1109/TGRS.2025.3555824.

文章链接:https://ieeexplore.ieee.org/document/10945397

供稿:王昶景

审核:尹高飞

留下评论